YOLO-Faster: An efficient remote sensing object detection method based on AMFFN

被引:0
|
作者
Tong, Yicheng [1 ]
Yue, Guan [1 ]
Fan, Longfei [1 ]
Lyu, Guosen [1 ]
Zhu, Deya [1 ]
Liu, Yan [1 ]
Meng, Boyuan [2 ]
Liu, Shu [1 ]
Mu, Xiaokai [3 ,4 ]
Tian, Congling [1 ]
机构
[1] Hangzhou Zhiyuan Res Inst Co Ltd, R&D Dept 4, Hangzhou, Peoples R China
[2] Zhejiang Univ, Polytech Inst, Hangzhou, Peoples R China
[3] Harbin Engn Univ, Qingdao Innovat & Dev Ctr, Qingdao, Peoples R China
[4] Harbin Engn Univ, Natl Key Lab Autonomous Marine Vehicle Technol, Harbin, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing object detection; deep learning; lightweight network; YOLO; IMAGES;
D O I
10.1177/00368504241280765
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
As a pivotal task within computer vision, object detection finds application across a diverse spectrum of industrial scenarios. The advent of deep learning technologies has significantly elevated the accuracy of object detectors designed for general-purpose applications. Nevertheless, in contrast to conventional terrestrial environments, remote sensing object detection scenarios pose formidable challenges, including intricate and diverse backgrounds, fluctuating object scales, and pronounced interference from background noise, rendering remote sensing object detection an enduringly demanding task. In addition, despite the superior detection performance of deep learning-based object detection networks compared to traditional counterparts, their substantial parameter and computational demands curtail their feasibility for deployment on mobile devices equipped with low-power processors. In response to the aforementioned challenges, this paper introduces an enhanced lightweight remote sensing object detection network, denoted as YOLO-Faster, built upon the foundation of YOLOv5. Firstly, the lightweight design and inference speed of the object detection network is augmented by incorporating the lightweight network as the foundational network within YOLOv5, satisfying the demand for real-time detection on mobile devices. Moreover, to tackle the issue of detecting objects of different scales in large and complex backgrounds, an adaptive multiscale feature fusion network is introduced, which dynamically adjusts the large receptive field to capture dependencies among objects of different scales, enabling better modeling of object detection scenarios in remote sensing scenes. At last, the robustness of the object detection network under background noise is enhanced through incorporating a decoupled detection head that separates the classification and regression processes of the detection network. The results obtained from the public remote sensing object detection dataset DOTA show that the proposed method has a mean average precision of 71.4% and a detection speed of 38 frames per second.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] YOLO-RS: A More Accurate and Faster Object Detection Method for Remote Sensing Images
    Xie, Tianyi
    Han, Wen
    Xu, Sheng
    REMOTE SENSING, 2023, 15 (15)
  • [2] YOLO-DA: An Efficient YOLO-Based Detector for Remote Sensing Object Detection
    Lin, Jiehua
    Zhao, Yan
    Wang, Shigang
    Tang, Yu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [3] RSI-YOLO: Object Detection Method for Remote Sensing Images Based on Improved YOLO
    Li, Zhuang
    Yuan, Jianhui
    Li, Guixiang
    Wang, Hao
    Li, Xingcan
    Li, Dan
    Wang, Xinhua
    SENSORS, 2023, 23 (14)
  • [4] Remote sensing object detection based on YOLO and embedded systems
    Lin Yu
    Dong Zhenghong
    Xia Lurui
    Wang Junwei
    AOPC 2020: DISPLAY TECHNOLOGY; PHOTONIC MEMS, THZ MEMS, AND METAMATERIALS; AND AI IN OPTICS AND PHOTONICS, 2020, 11565
  • [5] Faster-YOLO: An accurate and faster object detection method
    Yin, Yunhua
    Li, Huifang
    Fu, Wei
    DIGITAL SIGNAL PROCESSING, 2020, 102
  • [6] YOLO-RMS: A Lightweight and Efficient Detector for Object Detection in Remote Sensing
    Liu, Fengwen
    Hu, Wenqiang
    Hu, Huan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [7] YOLO-Remote: An Object Detection Algorithm for Remote Sensing Targets
    Fan, Kaizhe
    Li, Qian
    Li, Quanjun
    Zhong, Guangqi
    Chu, Yue
    Le, Zhen
    Xu, Yeling
    Li, Jianfeng
    IEEE ACCESS, 2024, 12 : 155654 - 155665
  • [8] Efficient object detection method based on aerial optical sensors for remote sensing
    Zhang, Qiuhao
    Tang, Jiaming
    Zheng, Haoze
    Lin, Chunyu
    DISPLAYS, 2022, 75
  • [9] Transfer Learning for Object Detection in Remote Sensing Images with YOLO
    Devi, A.
    Reddy, K. Venkateswara
    Bangare, Sunil L.
    Pande, Deepti S.
    Balaji, S. R.
    Badhoutiya, Arti
    Shrivastava, Anurag
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 980 - 989
  • [10] Rotating-YOLO: A novel YOLO model for remote sensing rotating object detection
    Liu, Zhiguo
    Chen, Yuqi
    Gao, Yuan
    IMAGE AND VISION COMPUTING, 2025, 154