Bender-Knuth involutions on linear extensions of posets

被引:0
|
作者
Chiang, Judy Hsin-Hui [1 ]
Hoang, Anh Trong Nam [2 ]
Kendall, Matthew [3 ]
Lynch, Ryan [4 ]
Nguyen, Son [2 ]
Przybocki, Benjamin [5 ]
Xia, Janabel [6 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Princeton Univ, Dept Math, Princeton, NJ USA
[4] Univ Notre Dame, Dept Math, Notre Dame, IN USA
[5] Stanford Univ, Dept Math, Stanford, CA USA
[6] MIT, Dept Math, Cambridge, MA USA
关键词
Bender-Knuth involution; Berenstein-Kirillov group; Linear extension; Cactus group; CONJECTURE;
D O I
10.1016/j.disc.2024.114068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the permutation group BKP generated by Bender-Knuth moves on linear extensions of a poset P , an analog of the Berenstein-Kirillov group on column-strict tableaux. We explore the group relations, with an emphasis on identifying posets P for which the cactus relations hold in BKP. We also examine BKP as a subgroup of the symmetric group S L( P ) on the set of linear extensions of P with the focus on analyzing posets P for which BKP = S L( P ) . (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条