Surface Modification of Bioactive Glasses by Femtosecond and CO2 Lasers

被引:0
|
作者
Gonzalez-Quintas, Mario [1 ]
Gago-Vidal, Bruno [1 ,2 ]
Calvo-Garcia, Erik [1 ]
Sajjad, Hamza [1 ]
Riveiro, Antonio [1 ]
Comesana, Rafael [1 ]
Pou, Juan [1 ]
机构
[1] Univ Vigo, CINTECX, LaserON Res Grp, Vigo 36310, Spain
[2] SERGAS UVIGO, Galicia Sur Hlth Res Inst IIS Galicia Sur, Vigo 36312, Spain
来源
COATINGS | 2025年 / 15卷 / 02期
关键词
bioactive glass; ICIE16; laser surface modification; femtosecond laser; CO2; laser; surface roughness; dissolution behavior; FRACTURE-TOUGHNESS; HYDROXYAPATITE; BIOCERAMICS; FABRICATION; ROUGHNESS; IMPLANTS;
D O I
10.3390/coatings15020195
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study explores the potential of laser surface modification (LSM) to enhance the biological properties of melt-derived bioactive glasses, specifically 45S5 and ICIE16, which are key in medical implants due to their bone-regenerating capabilities. Despite their bioactivity, these materials have limitations in cellular adhesion due to their smooth surfaces. LSM enables the creation of precise surface patterns that could improve interactions with biological environments. This study involved surface texturing bioactive glass (BG) samples using CO2 and femtosecond (fs) laser systems, modifying the laser average power, scanning speed, line spacing, and number of passes. Characterization methods included optical and stereoscopic microscopy, profilometry, and solubility tests in Tris-HCl buffer to evaluate surface roughness evolution, morphology, and bioactive behavior. The findings demonstrated significant modifications in surface properties post-texturing. The CO2 laser-treated surfaces preserve the increased roughness values after 75 days of immersion in Tris-HCl buffer for both 45S5 and ICIE16 melt-quenched bioactive glasses, showing a potential long-term osteoconductivity enhancement. On the contrary, the femtosecond laser-treated surfaces revealed a preferential apatite precipitation ability at the pattern grooves. Femtosecond laser modification stands as a suitable technique to provide preferential osteoconductivity characteristics when conducted on the surface of bioactive glass with moderate reactivity, such as ICIE16 bioactive glass.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Laser material processing of glasses with CO2 lasers
    Staupendahl, G
    Gerling, P
    LASERS IN MATERIAL PROCESSING, 1997, 3097 : 670 - 676
  • [2] Surface Modification of Bioactive Glasses and Preparation of PDLLA/Bioactive Glass Composite Films
    Gao, Yuan
    Chang, Jiang
    JOURNAL OF BIOMATERIALS APPLICATIONS, 2009, 24 (02) : 119 - 138
  • [3] Formation of Micro-lens Array using Femtosecond and CO2 lasers
    Choi, Hun-Kook
    Ryu, Jinchang
    Kim, Chanju
    Noh, Young-Chul
    Sohn, Ik-Bu
    Kim, Jin-Tae
    JOURNAL OF LASER MICRO NANOENGINEERING, 2016, 11 (03): : 341 - 345
  • [4] CO2 lasers
    Raab, T
    PHOTONICS SPECTRA, 1998, 32 (05) : 86 - 86
  • [5] CO2 LASERS
    SOBOLEV, NN
    SOKOVIKO.VV
    SOVIET PHYSICS USPEKHI-USSR, 1967, 10 (02): : 153 - +
  • [6] Bioactive modification of titanium by coating bioactive glasses
    Kwon, Sungmin
    Jee, Sang Soo
    Kim, Cheol Y.
    2002, Korean Institute of Metals and Materials (08):
  • [7] Surface modification of carbon nanotubes by CO2 plasma
    Perez-Martinez, Bertha T.
    Farias-Cepeda, Lorena
    Hernandez-Hernandez, Ernesto
    Perez-Aguilar, Nancy V.
    AFINIDAD, 2016, 73 (573) : 55 - 59
  • [8] Surface modification of silica particles assisted by CO2
    Purcar, Violeta
    Cinteza, Otilia
    Donescu, Dan
    Bala, Daniela
    Ghiurea, Marius
    Petcu, Cristian
    Caprarescu, Simona
    JOURNAL OF SUPERCRITICAL FLUIDS, 2014, 87 : 34 - 39
  • [9] Surface modification of activated carbon for CO2 adsorption
    Gao, Feng
    Wang, Yuan
    Li, Cun-Mei
    Xu, Zhi-Xiong
    Zhang, Chang-Ming
    Wang, Jian-Long
    Li, Kai-Xi
    Xinxing Tan Cailiao/New Carbon Materials, 2014, 29 (02): : 96 - 101
  • [10] Bioactive modification of titanium by coating bioactive glasses
    Sungmin Kwon
    Sang Soo Jee
    Cheol Y. Kim
    Metals and Materials International, 2002, 8 (6) : 555 - 561