Theoretical properties of angular halfspace depth

被引:0
|
作者
Nagy, Stanislav [1 ]
Laketa, Petra [1 ]
机构
[1] Charles Univ Prague, Dept Probabil & Math Stat, Prague, Czech Republic
关键词
Angular halfspace depth; angular Tukey's depth; directional data; median; nonparametric methods; DIRECTIONAL-DATA; MULTIVARIATE; QUANTILES;
D O I
10.3150/24-BEJ1756
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The angular halfspace depth (ahD) is a natural modification of the celebrated halfspace (or Tukey) depth to the setup of directional data. It allows us to define elements of nonparametric inference, such as the median, the inter-quantile regions, or the rank statistics, for datasets supported on the unit sphere. Despite being introduced in 1987, ahD has never received ample recognition in the literature, mainly due to the lack of efficient algorithms for its computation. With the recent progress on the computational front, ahD exhibits the potential for developing viable nonparametric statistics techniques for directional datasets. In this paper, we thoroughly treat the theoretical properties of ahD. We show that similarly to the classical halfspace depth for multivariate data, also ahD satisfies many desirable properties of a statistical depth function. Further, we derive uniform continuity/consistency results for the associated set of directional medians, and the central regions of ahD, the latter representing a depth-based analogue of the quantiles for directional data.
引用
收藏
页码:1007 / 1031
页数:25
相关论文
共 50 条
  • [1] A weighted localization of halfspace depth and its properties
    Kotik, Lukas
    Hlubinka, Daniel
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 157 : 53 - 69
  • [2] WEIGHTED HALFSPACE DEPTH
    Hlubinka, Daniel
    Kotik, Lukas
    Vencalek, Ondrej
    KYBERNETIKA, 2010, 46 (01) : 125 - 148
  • [3] Simple halfspace depth
    Laketa, Petra
    Pokorny, Dusan
    Nagy, Stanislav
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2022, 27
  • [4] A characterization of halfspace depth
    Carrizosa, E
    JOURNAL OF MULTIVARIATE ANALYSIS, 1996, 58 (01) : 21 - 26
  • [5] Computing Halfspace Depth and Regression Depth
    Liu, Xiaohui
    Zuo, Yijun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2014, 43 (05) : 969 - 985
  • [6] Multivariate Functional Halfspace Depth
    Claeskens, Gerda
    Hubert, Mia
    Slaets, Leen
    Vakili, Kaveh
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) : 411 - 423
  • [7] Exact computation of the halfspace depth
    Dyckerhoff, Rainer
    Mozharovskyi, Pavlo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 98 : 19 - 30
  • [8] Halfspace depth and floating body
    Nagy, Stanislav
    Schuett, Carsten
    Werner, Elisabeth M.
    STATISTICS SURVEYS, 2019, 13 : 52 - 118
  • [9] Influence function of halfspace depth
    Romanazzi, M
    JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 77 (01) : 138 - 161
  • [10] Uniform convergence rates for halfspace depth
    Burr, Michael A.
    Fabrizio, Robert J.
    STATISTICS & PROBABILITY LETTERS, 2017, 124 : 33 - 40