This study considers the development of composite from biodegradable bioplastic obtained from waste starch reinforced with chitosan obtained from snail shells. About 30 g of the starch, 8 mL of glycerol, 2 mL of olive oil, and 8 mL of vinegar were added without chitosan and made up to 150 mL with distilled water. For other samples, 0.5, 1, 2, and 4 g of chitosan were added as reinforcements. The solution was thoroughly mixed, then heated to a temperature of 70 degrees C and stirred continuously till it started to gel, after which it was dried for 3 days. The developed composite was evaluated via physical, mechanical, and structural analyses. The results indicated that the sample with 0.5 g of chitosan reinforcement outperformed others with or without chitosan reinforcement, showing evidence of low water content, solubility, absorption, high tensile strength, and Young's modulus. The Fourier transform infrared (FTIR) spectroscopy results revealed that the chitosan amino group chemically reacted with the starch hydroxyl group, and a bio-blend was formed. From the scanning electron microscopy (SEM) test, the morphology of the composite surface showed homogeneity with no visible agglomerates, while the x-ray diffraction (XRD) results showed a sharp peak at 2 theta of 29 degrees. In addition, the thermogravimetric analysis (TGA) shows that the thermoplastic starch with 0.5 g of chitosan has the highest thermal stability at 750 degrees C, leaving 19.63% residue. This study is significant as it enhances the application of bioplastics, encourages waste-to-wealth conversion, reduces waste generation, and promotes environmental sustainability.