Remaining useful life prediction of lithium-ion batteries based on DBO-CNN-DSformer - CNN-DSformer

被引:0
|
作者
Yin, Congbo [1 ]
Shen, Xiaoyu [1 ]
Wang, Chengbin [1 ]
Zhu, Minmin [1 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Mech Engn, Shanghai 200093, Peoples R China
关键词
Lithium-ion batteries; Dung beetle optimization algorithm; DSformer; Remaining useful life; convolutional neural; network;
D O I
10.1016/j.electacta.2024.145123
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In order to improve the accuracy of predicting RUL of lithium-ion batteries, a lithium-ion battery RUL prediction method based on the DBO-CNN-DSformer model is proposed. Firstly, the health characteristics of the battery are extracted and the local information of health features is mined using CNN. DSformer is utilized for global information, local information, and variable correlation learning of battery aging characteristics. The DBO is used to optimize the super-parameters of the CNN-DSformer model and build the DBO-CNN-DSformer model. Finally, the battery aging data set was used for verification. The results show that DBO-CNN-DSformer, which sets different prediction starting points, can extract sequence information from input data and establish longterm dependencies between sequences. The maximum average MRE error in the NASA data set was 0.05, the maximum average MAE was 0.018, and the maximum average AE error was within 5. The maximum average MRE error of the CALCE data set was 0.37, the maximum average MAE was 0.014, and the maximum average AE prediction error was within 10. Compared with LSTM, RNN, and Transformer models, it was found that DBO-CNN-DSformer showed high prediction accuracy and good robustness.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Remaining useful life prediction of Lithium-ion batteries based on data preprocessing and CNN-LSSVR algorithm
    Dong, Ti
    Sun, Yiming
    Liu, Jia
    Gao, Qiang
    Zhao, Chunrong
    Cao, Wenjiong
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2025, 167
  • [2] Application of state of health estimation and remaining useful life prediction for lithium-ion batteries based on AT-CNN-BiLSTM
    Zhao, Feng-Ming
    Gao, De-Xin
    Cheng, Yuan-Ming
    Yang, Qing
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] Prediction of the Remaining Useful Life of Lithium-Ion Batteries Based on the 1D CNN-BLSTM Neural Network
    Mou, Jianhui
    Yang, Qingxin
    Tang, Yi
    Liu, Yuhui
    Li, Junjie
    Yu, Chengcheng
    BATTERIES-BASEL, 2024, 10 (05):
  • [4] Remaining useful life prediction of lithium-ion battery based on CNN-Bi-LSTM network
    Liang H.
    Yuan P.
    Gao Y.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2021, 41 (10): : 213 - 219
  • [5] State-of-health estimation and remaining useful life prediction of lithium-ion batteries using DnCNN-CNN
    Chae, Sun Geu
    Bae, Suk Joo
    Oh, Ki-Yong
    JOURNAL OF ENERGY STORAGE, 2025, 106
  • [6] Probabilistic Prediction of Remaining Useful Life of Lithium-ion Batteries
    Zhang, Renjie
    Li, Jialin
    Chen, Yifei
    Tan, Shiyi
    Jiang, Jiaxu
    Yuan, Xinmei
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1820 - 1824
  • [7] Remaining useful life indirect prediction of lithium-ion batteries using CNN-BiGRU fusion model and TPE optimization
    Zheng, Xiaoyu
    Chen, Dewang
    Wang, Yusheng
    Zhuang, Liping
    AIMS ENERGY, 2023, 11 (05) : 896 - 917
  • [8] Remaining Useful Life Prediction of Lithium-ion Batteries Based on a Hybrid Model
    Lv, Haizhen
    Shen, Dongxu
    Yang, Zhigang
    2022 IEEE 17TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2022, : 1003 - 1008
  • [9] A hybrid CNN-BiLSTM approach for remaining useful life prediction of EVs lithium-Ion battery
    Gao, Dexin
    Liu, Xin
    Zhu, Zhenyu
    Yang, Qing
    MEASUREMENT & CONTROL, 2023, 56 (1-2): : 371 - 383
  • [10] Remaining Useful Life Prediction of Lithium-Ion Battery Using ICC-CNN-LSTM Methodology
    Rincon-Maya, Catherine
    Guevara-Carazas, Fernando
    Hernandez-Barajas, Freddy
    Patino-Rodriguez, Carmen
    Usuga-Manco, Olga
    ENERGIES, 2023, 16 (20)