Risk-Anticipatory Autonomous Driving Strategies Considering Vehicles' Weights Based on Hierarchical Deep Reinforcement Learning

被引:2
|
作者
Chen, Di [1 ,2 ]
Li, Hao [3 ]
Jin, Zhicheng [1 ,2 ]
Tu, Huizhao [3 ]
Zhu, Meixin [4 ,5 ,6 ]
机构
[1] Tongji Univ, Coll Transportat Engn, Shanghai 201804, Peoples R China
[2] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[3] Tongji Univ, Coll Transportat Engn, Key Lab Rd & Traff Engn, Minist Educ, Shanghai 201804, Peoples R China
[4] Hong Kong Univ Sci & Technol Guangzhou, Syst Hub, Guangzhou, Peoples R China
[5] Hong Kong Univ Sci & Technol, Civil & Environm Engn Dept, Hong Kong, Peoples R China
[6] Guangdong Prov Key Lab Integrated Commun Sensing, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Autonomous vehicles; decision making; driving risk; driving safety; reinforcement learning; DECISION-MAKING; MITIGATION; CRASHES; TIME; ROAD;
D O I
10.1109/TITS.2024.3458439
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Autonomous vehicles (AVs) have the potential to prevent accidents caused by drivers' errors and reduce road traffic risks. Due to the nature of heavy vehicles, whose collisions cause more serious crashes, the weights of vehicles need to be considered when making driving strategies aimed at reducing the potential risks and their consequences in the context of autonomous driving. This study develops an autonomous driving strategy based on risk anticipation, considering the weights of surrounding vehicles and using hierarchical deep reinforcement learning. A risk indicator integrating surrounding vehicles' weights, based on the risk field theory, is proposed and incorporated into autonomous driving decisions. A hybrid action space is designed to allow for left lane changes, right lane changes and car-following, which enables AVs to act more freely and realistically whenever possible. To solve the above hybrid decision-making problem, a hierarchical proximal policy optimization (HPPO) algorithm with an attention mechanism (AT-HPPO) is developed, providing great advantages in maintaining stable performance with high robustness and generalization. An indicator, potential collision energy in conflicts (PCEC), is newly proposed to evaluate the performance of the developed AV driving strategy from the perspective of the consequences of potential accidents. The performance evaluation results in simulation and dataset demonstrate that our model provides driving strategies that reduce both the likelihood and consequences of potential accidents, at the same time maintaining driving efficiency. The developed method is especially meaningful for AVs driving on highways, where heavy vehicles make up a high proportion of the traffic.
引用
收藏
页码:19605 / 19618
页数:14
相关论文
共 50 条
  • [1] Deep reinforcement-learning-based driving policy for autonomous road vehicles
    Makantasis, Konstantinos
    Kontorinaki, Maria
    Nikolos, Ioannis
    IET INTELLIGENT TRANSPORT SYSTEMS, 2020, 14 (01) : 13 - 24
  • [2] Deep Hierarchical Reinforcement Learning for Autonomous Driving with Distinct Behaviors
    Chen, Jianyu
    Wang, Zining
    Tomizuka, Masayoshi
    2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 1239 - 1244
  • [3] Autonomous Overtaking for Intelligent Vehicles Considering Social Preference Based on Hierarchical Reinforcement Learning
    Lu, Hongliang
    Lu, Chao
    Yu, Yang
    Xiong, Guangming
    Gong, Jianwei
    AUTOMOTIVE INNOVATION, 2022, 5 (02) : 195 - 208
  • [4] Autonomous Overtaking for Intelligent Vehicles Considering Social Preference Based on Hierarchical Reinforcement Learning
    Hongliang Lu
    Chao Lu
    Yang Yu
    Guangming Xiong
    Jianwei Gong
    Automotive Innovation, 2022, 5 : 195 - 208
  • [5] Driving Decisions for Autonomous Vehicles in Intersection Environments: Deep Reinforcement Learning Approaches with Risk Assessment
    Yu, Wangpengfei
    Qian, Yubin
    Xu, Jiejie
    Sun, Hongtao
    Wang, Junxiang
    WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (04):
  • [6] Lane Change Strategies for Autonomous Vehicles: A Deep Reinforcement Learning Approach Based on Transformer
    Li, Guofa
    Qiu, Yifan
    Yang, Yifan
    Li, Zhenning
    Li, Shen
    Chu, Wenbo
    Green, Paul
    Li, Shengbo Eben
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (03): : 2197 - 2211
  • [7] Attention-based Hierarchical Deep Reinforcement Learning for Lane Change Behaviors in Autonomous Driving
    Chen, Yilun
    Dong, Chiyu
    Palanisamy, Praveen
    Mudalige, Priyantha
    Muelling, Katharina
    Dolan, John M.
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1326 - 1334
  • [8] Attention-based Hierarchical Deep Reinforcement Learning for Lane Change Behaviors in Autonomous Driving
    Chen, Yilun
    Dong, Chiyu
    Palanisamy, Praveen
    Mudalige, Priyantha
    Muelling, Katharina
    Dolan, John M.
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 3697 - 3703
  • [9] Reinforcement Learning and Deep Learning Based Lateral Control for Autonomous Driving
    Li, Dong
    Zhao, Dongbin
    Zhang, Qichao
    Chen, Yaran
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2019, 14 (02) : 83 - 98
  • [10] Deep reinforcement learning based control for Autonomous Vehicles in CARLA
    Perez-Gil, Oscar
    Barea, Rafael
    Lopez-Guillen, Elena
    Bergasa, Luis M.
    Gomez-Huelamo, Carlos
    Gutierrez, Rodrigo
    Diaz-Diaz, Alejandro
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (03) : 3553 - 3576