A machine learning-based protocol to support visual tree assessment and risk of failure classification on a university campus

被引:0
|
作者
Srivanit, Manat [1 ,2 ]
Kaewkhow, Suppawad [1 ]
机构
[1] Thammasat Univ, Fac Architecture & Planning, Pathum Thani 12121, Thailand
[2] Thammasat Univ, Fac Architecture & Planning, Res Cluster Livable Environm & Architectural Desig, Pathum Thani 12121, Thailand
关键词
Bosch; Machine learning; Decision tree analysis; Visual tree assessment; Tree management; URBAN TREES; IDENTIFICATION; IMPACT; FOREST; PARAMETERS; GROWTH;
D O I
10.1016/j.ufug.2024.128420
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Tree failure risk assessment involves visually evaluating trees by considering three essential factors: identifying potential targets that may be affected if the tree falls, assessing the potential consequences of the fall, and determining the likelihood of tree failure. This assessment was used to evaluate the safety of trees in a study area at Thammasat University Rangsit Center, Thailand. In two priority-selected areas for tree risk management, 3659 trees representing 139 species were assessed, and to understand the spatial patterns of tree health conditions and risks, the study employed a GIS-based mapping methodology to manage tree inventory and analyze the spatial patterns of tree health conditions and risks. A decision tree protocol based on the chi-squared automatic interaction detector (CHAID) algorithm, which employs machine learning, was used to evaluate the risk of tree failure. Our study successfully identified seven variables that are crucial in assessing the risk of tree failure. According to the findings, the overall accuracy rate of failure risk classification was 87.35 %, and of all the trees evaluated, 280 trees (7.65 % of the total) representing 34 different species were at high risk. It is recommended to start the assessment process by evaluating important variables such as tree cavities, pest infestations, mechanical damage, dead branches, and epicormic growth. Machine learning protocols, integrated with GIS, are shown to be effective, spatially-explicit, decision-support tools for detecting tree failure potential and assessing risk ratings. Application of these tools improves tree risk management practices.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine learning-based assessment of diabetes risk
    Sun, Qi
    Cheng, Xin
    Han, Kuo
    Sun, Yichao
    Ren, He
    Li, Ping
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [2] A machine learning-based classification model to support university students with dyslexia with personalized tools and strategies
    Andrea Zingoni
    Juri Taborri
    Giuseppe Calabrò
    Scientific Reports, 14
  • [3] A machine learning-based classification model to support university students with dyslexia with personalized tools and strategies
    Zingoni, Andrea
    Taborri, Juri
    Calabro, Giuseppe
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [4] Machine Learning-Based Water Quality Classification Assessment
    Chen, Wenliang
    Xu, Duo
    Pan, Bowen
    Zhao, Yuan
    Song, Yan
    WATER, 2024, 16 (20)
  • [5] A Machine Learning-based Method for Cyber Risk Assessment
    Rafaiani, Giulia
    Battaglioni, Massimo
    Compagnoni, Simone
    Senigagliesi, Linda
    Chiaraluce, Franco
    Baldi, Marco
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 263 - 268
  • [6] Supervised Machine Learning-Based Decision Support for Signal Validation Classification
    Muhammad Imran
    Aasia Bhatti
    David M. King
    Magnus Lerch
    Jürgen Dietrich
    Guy Doron
    Katrin Manlik
    Drug Safety, 2022, 45 : 583 - 596
  • [7] Deep Learning-Based Imbalanced Classification With Fuzzy Support Vector Machine
    Wang, Ke-Fan
    An, Jing
    Wei, Zhen
    Cui, Can
    Ma, Xiang-Hua
    Ma, Chao
    Bao, Han-Qiu
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 9
  • [8] Supervised Machine Learning-Based Decision Support for Signal Validation Classification
    Imran, Muhammad
    Bhatti, Aasia
    King, David M.
    Lerch, Magnus
    Dietrich, Juergen
    Doron, Guy
    Manlik, Katrin
    DRUG SAFETY, 2022, 45 (05) : 583 - 596
  • [9] A Machine Learning-Based Fall Risk Assessment Model for Inpatients
    Liu, Chia-Hui
    Hu, Ya-Han
    Lin, Yu-Hsiu
    CIN-COMPUTERS INFORMATICS NURSING, 2021, 39 (08) : 450 - 459
  • [10] Machine learning-based clinical decision support for infection risk prediction
    Feng, Ting
    Noren, David P.
    Kulkarni, Chaitanya
    Mariani, Sara
    Zhao, Claire
    Ghosh, Erina
    Swearingen, Dennis
    Frassica, Joseph
    McFarlane, Daniel
    Conroy, Bryan
    FRONTIERS IN MEDICINE, 2023, 10