A calculus for modal compact Hausdorff spaces

被引:0
|
作者
Bezhanishvili, Nick [1 ]
Carai, Luca [2 ]
Ghilardi, Silvio [2 ]
Zhao, Zhiguang [3 ]
机构
[1] Univ Amsterdam, Inst Log Language & Computat, NL-1098 XH Amsterdam, Netherlands
[2] Univ Milan, Dept Math, I-20122 Milan, Italy
[3] Taishan Univ, Sch Math & Stat, Tai An 271000, Peoples R China
关键词
modal logic; compact Hausdorff space; continuous relation; de Vries algebra; strict implication; Pi(2)-rule; admissible rule. 2020 Mathematics Subject Classification;
D O I
10.1093/logcom/exae086
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The symmetric strict implication calculus S(2)ICis a modal calculus for compact Hausdorff spaces. This is established throughde Vries duality, linking compact Hausdorff spaces with de Vries algebras-complete Boolean algebras equipped with aspecial relation. Modal compact Hausdorff spaces are compact Hausdorff spaces enriched with a continuous relation. Thesespaces correspond, via modalized de Vries duality, to upper continuous modal de Vries algebras. In this paper, we introducethe modal symmetric strict implication calculus (MSIC)-I-2, which extends (SIC)-I-2. We prove that MS(2)ICis strongly sound andcomplete with respect to upper continuous modal de Vries algebras, thereby providing a logical calculus for modal compactHausdorff spaces. We also develop a relational semantics for MS(2)ICthat we employ to show admissibility of various Pi(2)-rules in this system
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Modal compact Hausdorff spaces
    Bezhanishvili, Guram
    Bezhanishvili, Nick
    Harding, John
    JOURNAL OF LOGIC AND COMPUTATION, 2015, 25 (01) : 1 - 35
  • [2] A strict implication calculus for compact Hausdorff spaces
    Bezhanishvili, G.
    Bezhanishvili, N.
    Santoli, T.
    Venema, Y.
    ANNALS OF PURE AND APPLIED LOGIC, 2019, 170 (11)
  • [3] Algorithmic Sahlqvist Preservation for Modal Compact Hausdorff Spaces
    Zhao, Zhiguang
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION: 24TH INTERNATIONAL WORKSHOP, WOLLIC 2017, LONDON, UK, JULY 18-21, 2017, PROCEEDINGS, 2017, 10388 : 387 - 400
  • [4] On modal logics arising from scattered locally compact Hausdorff spaces
    Bezhanishvili, Guram
    Bezhanishvili, Nick
    Lucero-Bryan, Joel
    van Mill, Jan
    ANNALS OF PURE AND APPLIED LOGIC, 2019, 170 (05) : 558 - 577
  • [5] DECOMPOSITIONS OF COMPACT HAUSDORFF SPACES
    RAKOWSKI, ZM
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975, 23 (10): : 1089 - 1091
  • [6] ON ULTRACOPRODUCTS OF COMPACT HAUSDORFF SPACES
    GUREVIC, R
    JOURNAL OF SYMBOLIC LOGIC, 1988, 53 (01) : 294 - 300
  • [7] PARTITIONS OF COMPACT HAUSDORFF SPACES
    GRUENHAGE, G
    FUNDAMENTA MATHEMATICAE, 1993, 142 (01) : 89 - 100
  • [8] COMPACT CONDENSATIONS OF HAUSDORFF SPACES
    Belugin, V. I.
    Osipov, A. V.
    Pytkeev, E. G.
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (01) : 15 - 27
  • [9] Compact condensations of Hausdorff spaces
    V. I. Belugin
    A. V. Osipov
    E. G. Pytkeev
    Acta Mathematica Hungarica, 2021, 164 : 15 - 27
  • [10] Compact Hausdorff Spaces with Relations and Gleason Spaces
    Bezhanishvili, G.
    Gabelaia, D.
    Harding, J.
    Jibladze, M.
    APPLIED CATEGORICAL STRUCTURES, 2019, 27 (06) : 663 - 686