A Machine Learning Model to Predict Response to Chemoradiation among Patients with Rectal Cancer

被引:0
|
作者
Celotto, Francesco
Crimi, Filippo
Salvatore, Christian
Castiglioni, Isabella
Spolverato, Gaya
机构
[1] Univ Padua, Padua, Italy
[2] DeepTrace Technol, Milan, Italy
关键词
D O I
暂无
中图分类号
R61 [外科手术学];
学科分类号
摘要
引用
收藏
页码:S80 / S80
页数:1
相关论文
共 50 条
  • [1] A Machine Learning Model Based on MRI Radiomics to Predict Response to Chemoradiation Among Patients with Rectal Cancer
    Crimi, Filippo
    D'Alessandro, Carlo
    Zanon, Chiara
    Celotto, Francesco
    Salvatore, Christian
    Interlenghi, Matteo
    Castiglioni, Isabella
    Quaia, Emilio
    Pucciarelli, Salvatore
    Spolverato, Gaya
    LIFE-BASEL, 2024, 14 (12):
  • [2] Tissue microarray constructs to predict a response to chemoradiation in rectal cancer
    Huerta, Sergio
    Hrom, John
    Gao, Xiaohuan
    Saha, Debabrata
    Anthony, Thomas
    Reinhart, Henry
    Kapur, Payal
    DIGESTIVE AND LIVER DISEASE, 2010, 42 (10) : 679 - 684
  • [3] Interpretable Machine Learning Model for Predicting Pathologic Complete Response in Patients with Rectal Adenocarcinoma Treated with Chemoradiation Therapy
    Wang, D.
    Lee, S. H.
    Geng, H.
    Zhong, H.
    Plastaras, J. P.
    Wojcieszynski, A. P., Jr.
    Caruana, R.
    Xiao, Y.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E115 - E116
  • [4] Genomic Analysis to Predict Response to Neoadjuvant Chemoradiation Therapy in Rectal Cancer
    Thompson, A.
    Quinn, T. J.
    Thibodeau, B. J.
    Douglas, J.
    Peeples, C.
    Cousineau, C.
    Wasvary, H.
    Robertson, J.
    Wilson, G. D.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (03): : E174 - E174
  • [5] Peripheral blood lymphocyte subsets can predict the pathological response of rectal cancer patients to chemoradiation
    Tada, Noriko
    Tsuno, Nelson Hirokazu
    Kawai, Kazushige
    Murono, Koji
    Nirei, Takako
    Kaneko, Manabu
    Hiyoshi, Masaya
    Sasaki, Kazuhito
    Hongo, Kumiko
    Shunami, Eiji
    Kitayama, Joji
    Takahashi, Koki
    CANCER RESEARCH, 2012, 72
  • [6] Machine Learning to Predict Toxicity in Head and Neck Cancer Patients Treated with Definitive Chemoradiation
    Wojcieszynski, A. P., Jr.
    La Cava, W.
    Baumann, B. C.
    Lukens, J. N.
    Ghiam, A. Fotouhi
    Urbanowicz, R. J.
    Swisher-McClure, S. D.
    Doucette, A.
    Gabriel, P. E.
    Lin, A.
    Xiao, Y.
    Moore, J. H.
    Metz, J. M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E139 - E140
  • [7] TEMPORAL PATTERNS OF FATIGUE PREDICT PATHOLOGIC RESPONSE IN PATIENTS TREATED WITH PREOPERATIVE CHEMORADIATION THERAPY FOR RECTAL CANCER
    Park, Hee Chul
    Janjan, Nora A.
    Mendoza, Tito R.
    Lin, Edward H.
    Vadhan-Raj, Saroj
    Hundal, Mandeep
    Zhang, Yiqun
    Delclos, Marc E.
    Crane, Christopher H.
    Das, Prajnan
    Wang, Xin Shelley
    Cleeland, Charles S.
    Krishnan, Sunil
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 75 (03): : 775 - 781
  • [8] Interpretable machine learning for predicting pathologic complete response in patients treated with chemoradiation therapy for rectal adenocarcinoma
    Wang, Du
    Lee, Sang Ho
    Geng, Huaizhi
    Zhong, Haoyu
    Plastaras, John
    Wojcieszynski, Andrzej
    Caruana, Richard
    Xiao, Ying
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
  • [9] Development and validation of a machine learning model to predict venous thromboembolism among hospitalized cancer patients
    Meng, Lingqi
    Wei, Tao
    Fan, Rongrong
    Su, Haoze
    Liu, Jiahui
    Wang, Lijie
    Huang, Xinjuan
    Qi, Yi
    Li, Xuying
    ASIA-PACIFIC JOURNAL OF ONCOLOGY NURSING, 2022, 9 (12)
  • [10] Interpretable machine learning model to predict surgical difficulty in laparoscopic resection for rectal cancer
    Yu, Miao
    Yuan, Zihan
    Li, Ruijie
    Shi, Bo
    Wan, Daiwei
    Dong, Xiaoqiang
    FRONTIERS IN ONCOLOGY, 2024, 14