AI-Assisted Laryngeal Examination System

被引:0
|
作者
Baldini, Chiara [1 ,2 ]
Azam, Muhammad Adeel [1 ,2 ]
Thorniley, Madelaine [1 ]
Sampieri, Claudio [3 ,6 ]
Ioppi, Alessandro [4 ,6 ]
Peretti, Giorgio [5 ,6 ]
Mattos, Leonardo S. [1 ]
机构
[1] Ist Italiano Tecnol, Biomed Robot Lab, Dept Adv Robot, Genoa, Italy
[2] Univ Genoa, Dept Informat Bioengn Robot Syst Engn, Genoa, Italy
[3] Univ Genoa, Dept Expt Med, Genoa, Italy
[4] Hosp Clin Barcelona, Dept Otolaryngol, Barcelona, Spain
[5] Santa Chiara Hosp, Dept Otorhinolaryngol Head & Neck Surg, Trento, Italy
[6] IRCCS Osped Policlin San Martino, Unit Otorhinolaryngol Head & Neck Surg, Genoa, Italy
关键词
Laryngeal lesions; Endoscopy; CADe/x system; CLASSIFICATION;
D O I
10.1007/978-3-031-73376-5_13
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Laryngeal cancer (LC) and other benign conditions are major concerns in modern ear, nose, and throat medicine. A comprehensive evaluation of the larynx should employ flexible or rigid endoscopes to identify early-stage lesions, possibly enhanced with advanced imaging techniques such as Narrow Band Imaging (NBI) to empower tissue visualization. Factors that make the detection, diagnosis, and treatment of LC challenging include the huge amount of uninformative frames and the expertise-dependent nature of the assessment, leading to time-consuming procedures with high cognitive loads and the possibility of missed detections and misdiagnoses, especially for less-experienced clinicians. Deep Learning (DL) approaches have recently been studied regarding frame quality assessment, abnormal mass identification, and their margins definition to improve diagnostic accuracy and surgical outcomes. In this work, we proposed the integration of several Convolutional Neural Networks (CNNs) into a single computer-aided system for the assistance of less-experienced otolaryngologists, by directing their attention toward good-quality frames from which lesions can be automatically detected and characterized. We addressed the following challenging tasks: informative frame selection, lesion detection, lesion classification, and lesion segmentation. The developed system demonstrated a good trade-off between efficacy metrics and real-time performance, and the potential for clinical applications.
引用
收藏
页码:133 / 143
页数:11
相关论文
共 50 条
  • [1] Pythia: AI-assisted Code Completion System
    Svyatkovskiy, Alexey
    Zhao, Ying
    Fu, Shengyu
    Sundaresan, Neel
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2727 - 2735
  • [2] Youling: an AI-Assisted Lyrics Creation System
    Zhang, Rongsheng
    Mao, Xiaoxi
    Li, Le
    Jiang, Lin
    Chen, Lin
    Hu, Zhiwei
    Xi, Yadong
    Fan, Changjie
    Huang, Minlie
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING: SYSTEM DEMONSTRATIONS, 2020, : 85 - 91
  • [3] AI-assisted endoscopy
    不详
    DEUTSCHE MEDIZINISCHE WOCHENSCHRIFT, 2024, 149 (05) : 203 - 203
  • [4] AI-ASSISTED WARFARE
    Michel, Arthur Holland
    MIT TECHNOLOGY REVIEW, 2023, 126 (05): : 46 - 53
  • [5] AI-assisted Boolean search
    Kurian, N.
    Cherian, J. M.
    Cherian, K. K.
    Varghese, K. G.
    BRITISH DENTAL JOURNAL, 2023, 235 (06) : 363 - 363
  • [6] AI-assisted dental care
    S. Patil
    S. Bhandi
    K. H. Awan
    F. Licari
    British Dental Journal, 2023, 234 : 555 - 556
  • [7] Initial dosimetric experience using daily AI-assisted adaptive radiotherapy for laryngeal cancer
    Weizman, N.
    Blumenfeld, P.
    Wygoda, M.
    Darrs, I.
    Meirovitz, A.
    Menhel, J.
    Feldman, J.
    Popovtzer, A.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S1291 - S1291
  • [8] AI-assisted RT in LMICs
    Rasmussen, Mathis Ersted
    LANCET ONCOLOGY, 2023, 24 (06): : E244 - E244
  • [9] AI-assisted dental care
    Patil, S.
    Bhandi, S.
    Awan, K. H.
    Licari, F.
    BRITISH DENTAL JOURNAL, 2023, 234 (08) : 555 - 556
  • [10] AI-Assisted Human Teamwork
    Seo, Sangwon
    THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21, 2024, : 23415 - 23416