Unraveling the Electron Transport Propellant Mechanism of Oxygen Vacancy for Boosting Hydrogen Evolution Electrocatalysis in Alkaline Seawater

被引:0
|
作者
Tang, Junheng [1 ]
Liu, Xiaobin [1 ,2 ]
Wang, Xuanyi [1 ]
Wu, Siqi [1 ,2 ]
Zhu, Jiawei [1 ]
Wang, Xinping [1 ]
Wang, Tianshi [3 ]
Chi, Jingqi [1 ]
Wu, Zexing [1 ]
Wang, Lei [1 ,4 ]
机构
[1] Qingdao Univ Sci & Technol, Coll Marine Sci & Biol Engn, Key Lab Ecochem Engn, Int Sci & Technol Cooperat Base Ecochem Engn & Gre, Qingdao 266042, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Environm & Safety Engn, Qingdao 266042, Peoples R China
[3] Huaiyin Normal Univ, Sch Chem & Chem Engn, Jiangsu Key Lab Chem Low Dimens Mat, Huaian 223001, Peoples R China
[4] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, Qingdao 266042, Peoples R China
基金
中国国家自然科学基金;
关键词
AEMWE; chlorine repellent; electron transfer facilitator; electron-metal-support interaction; oxygen vacancies; AIR BATTERIES; EFFICIENT; WATER; SPILLOVER; CATALYST; TRANSITION; GENERATION; OXIDATION; CARBON; NI;
D O I
10.1002/smll.202409675
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Currently, hydrogen evolution reaction (HER) in alkaline seawater still faces problems such as low catalyst activity and Cl- poisoning of active sites. In this work, an electron transfer facilitator of oxygen vacancies is introduced as a driving force for electronic transmission, which enhances the electron-metal-support interactions (EMSI) effect while introducing a charge protective layer, realizing killing two birds with one stone. In situ characterizations and density functional theory (DFT) calculations demonstrate that the EMSI effect enhances the H* transfer step at the interface. At the same time, due to oxygen vacancies for the enhanced EMSI, Ru forms an electron-rich layer, avoiding the poison of Cl- on active sites in seawater for HER. As a result, the Ru/Ni(OH)2-x has an overpotential of only 156 mV at a current density of 1.0 A cm-2 in alkaline seawater. After assembling anion-exchange-membrane water electrolyzers (AEMWE), the Ru/Ni(OH)2-x has a flat efficiency of approximate to 70% at different current densities, low energy consumption and price of per gallon gas equivalent (GGE) H2 produced. Owning to the well Cl- tolerance, the catalyst also maintains long-term stability at 0.5 A cm-2, indicating its great potential for industrial feasibility.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Boosting alkaline hydrogen evolution: the dominating role of interior modification in surface electrocatalysis
    Li, Zhao
    Niu, Wenhan
    Yang, Zhenzhong
    Kara, Abdelkader
    Wang, Qi
    Wang, Maoyu
    Gu, Meng
    Feng, Zhenxing
    Du, Yingge
    Yang, Yang
    ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (09) : 3110 - 3118
  • [2] Hydrogen Spillover Boosted Hydrogen Evolution Electrocatalysis over Pd@CoP in Alkaline Seawater
    Wang, Xiaoyan
    He, Yuxuan
    Zhang, Quanzhi
    Sun, Shengjun
    Li, Zixiao
    Cai, Zhengwei
    Yang, Chaoxin
    Yue, Meng
    Zhang, Min
    Wang, Hefeng
    Farouk, Asmaa
    Hamdy, Mohamed S.
    Hu, Jianming
    Sun, Xuping
    Tang, Bo
    ACS MATERIALS LETTERS, 2024, 6 (09): : 3970 - 3976
  • [3] ELECTROCATALYSIS BY AMORPHOUS METALS OF HYDROGEN AND OXYGEN EVOLUTION IN ALKALINE-SOLUTION
    KREYSA, G
    HAKANSSON, B
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1986, 201 (01): : 61 - 83
  • [4] Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution
    Zhang, Tong
    Wu, Meng-Ying
    Yan, Dong-Yang
    Mao, Jing
    Liu, Hui
    Hu, Wen-Bin
    Du, Xi-Wen
    Ling, Tao
    Qiao, Shi-Zhang
    NANO ENERGY, 2018, 43 : 103 - 109
  • [5] Nanoporous nickel with rich adsorbed oxygen for efficient alkaline hydrogen evolution electrocatalysis
    Hu, Qingfeng
    Chen, Zelin
    Wang, Jiajun
    Zheng, Xuerong
    Han, Xiaopeng
    Deng, Yida
    Hu, Wenbin
    SCIENCE CHINA-MATERIALS, 2022, 65 (07) : 1825 - 1832
  • [6] Photothermal Effect of Cu NCs on CdS Homojunction Boosting Hydrogen Evolution in Alkaline Seawater
    Tang, Yuan
    Sun, Yan
    Li, Yanfang
    Guo, Yuchen
    Liu, Boxin
    Tan, Xin
    Hu, Zhuofeng
    Zhong, Dichang
    Ye, Jinhua
    Yu, Tao
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (40)
  • [7] Synergistically engineering of vacancy and doping in thiospinel to boost electrocatalytic oxygen evolution in alkaline water and seawater
    Xu, Hui
    Wang, Kun
    Jin, Lei
    Yang, Lida
    Yuan, Jingjing
    Zhang, Wenyao
    He, Guangyu
    Chen, Haiqun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 650 : 1500 - 1508
  • [8] Oxygen-Inserted Top-Surface Layers of Ni for Boosting Alkaline Hydrogen Oxidation Electrocatalysis
    Men, Yana
    Su, Xiaozhi
    Li, Peng
    Tan, Yue
    Ge, Chuangxin
    Jia, Shuangfeng
    Li, Lei
    Wang, Jianbo
    Cheng, Gongzhen
    Zhuang, Lin
    Chen, Shengli
    Luo, Wei
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (28) : 12661 - 12672
  • [9] Oxygen vacancy engineering of zinc oxide for boosting piezo-electrocatalytic hydrogen evolution
    Xiong, Xin
    Wang, Yang
    Ma, Jiangping
    He, Yingxin
    Huang, Jingyan
    Feng, Yajie
    Ban, Chaogang
    Gan, Li-Yong
    Zhou, Xiaoyuan
    APPLIED SURFACE SCIENCE, 2023, 616
  • [10] Boosting Alkaline Hydrogen Evolution on Stoichiometric Molybdenum Carbonitride via an Interstitial Vacancy-Elimination Strategy
    Dai, Liming
    Yao, Fanglei
    Yu, Lei
    Fang, Chenchen
    Li, Jing
    Xue, Liang
    Zhang, Shengli
    Xiong, Pan
    Fu, Yongsheng
    Sun, Jingwen
    Zhu, Junwu
    ADVANCED ENERGY MATERIALS, 2022, 12 (25)