Stability of generalized P-harmonic maps

被引:0
|
作者
Cherif, Ahmed mohammed [1 ]
机构
[1] Univ Mascara, Dept Math, Mascara 29000, Algeria
关键词
Kahlerian manifold; holomorphic map; staple p-harmonic map;
D O I
10.37193/CJM.2025.02.03
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove that any stable P(x)-harmonic map Psi from S-2 to N is a holomorphic or anti-holomorphic map, where N is a Kahlerian manifold with non-positive holomorphic bisectional curvature and P(x) >= 2 is a smooth function on the sphere S-2 satisfying some condition. We study the existence of stable P(x)-harmonic map from sphere S-n (n > 2) to Riemannian manifold N , and the stability of P(x)-harmonic identity. We also study the case of a product S-1(n) x ... x S-k(n).
引用
收藏
页码:299 / 311
页数:13
相关论文
共 50 条
  • [1] On the Generalized of p-Harmonic Maps
    Merdji, Bouchra
    Cherif, Ahmed Mohammed
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2022, 15 (02): : 183 - 191
  • [2] On the Generalized of p-harmonic and f-harmonic Maps
    Remli, Embarka
    Cherif, Ahmed Mohammed
    KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (01): : 169 - 179
  • [3] Liouville type theorems for generalized P-harmonic maps
    Cherif, Ahmed Mohammed
    ARABIAN JOURNAL OF MATHEMATICS, 2024, 13 (02) : 255 - 262
  • [4] The p-harmonic approximation and the regularity of p-harmonic maps
    Frank Duzaar
    Giuseppe Mingione
    Calculus of Variations and Partial Differential Equations, 2004, 20 : 235 - 256
  • [5] The p-harmonic approximation and the regularity of p-harmonic maps
    Duzaar, F
    Mingione, G
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (03) : 235 - 256
  • [6] p-harmonic maps and stability of Riemannian submersions.
    Montaldo, S
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1996, 10A (03): : 537 - 550
  • [7] On equivariant p-harmonic maps
    Fardoun, A
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (01): : 25 - 72
  • [8] p-harmonic maps with applications
    Wei, SW
    NONLINEAR EVOLUTION EQUATIONS AND DYNAMICAL SYSTEMS, 2003, : 91 - 108
  • [9] A REMARK ON P-HARMONIC MAPS
    NAKAUCHI, N
    TAKAKUWA, S
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (02) : 169 - 185
  • [10] ON p-HARMONIC MAPS INTO SPHERES
    Dragomir, Sorin
    Tommasoli, Andrea
    TSUKUBA JOURNAL OF MATHEMATICS, 2011, 35 (02) : 161 - 167