BPaCo: Balanced Parametric Contrastive Learning for Long-Tailed Medical Image Classification

被引:0
|
作者
Cai, Zhiyuan [1 ,2 ]
Wei, Tianyunxi [1 ]
Lin, Li [1 ,3 ]
Chen, Hao [2 ]
Tang, Xiaoying [1 ,4 ]
机构
[1] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Comp Sci Engn, Hong Kong, Peoples R China
[3] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[4] Southern Univ Sci & Technol, Jiaxing Res Inst, Jiaxing, Peoples R China
基金
中国国家自然科学基金;
关键词
Long-tailed; Contrastive learning; Medical image classification;
D O I
10.1007/978-3-031-72378-0_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical image classification is an essential medical image analysis tasks. However, due to data scarcity of rare diseases in clinical scenarios, the acquired medical image datasets may exhibit long-tailed distributions. Previous works employ class re-balancing to address this issue yet the representation is usually not discriminative enough. Inspired by contrastive learning's power in representation learning, in this paper, we propose and validate a contrastive learning based framework, named Balanced Parametric Contrastive learning (BPaCo), to tackle long-tailed medical image classification. There are three key components in BPaCo: across-batch class-averaging to balance the gradient contribution from negative classes; hybrid class-complement to have all classes appear in every mini-batch for discriminative prototypes; cross-entropy logit compensation to formulate an end-to-end classification framework with even stronger feature representations. Our BPaCo shows outstanding classification performance and high computational efficiency on three highly-imbalanced medical image classification datasets. The source code is available at https://github.com/Davidczy/BPaCo.
引用
收藏
页码:383 / 393
页数:11
相关论文
共 50 条
  • [1] ProCo: Prototype-Aware Contrastive Learning for Long-Tailed Medical Image Classification
    Yang, Zhixiong
    Pan, Junwen
    Yang, Yanzhan
    Shi, Xiaozhou
    Zhou, Hong-Yu
    Zhang, Zhicheng
    Bian, Cheng
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 173 - 182
  • [2] Balanced Contrastive Learning for Long-Tailed Visual Recognition
    Zhu, Jianggang
    Wang, Zheng
    Chen, Jingjing
    Chen, Yi-Ping Phoebe
    Jiang, Yu-Gang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6898 - 6907
  • [3] Contrastive Learning based Hybrid Networks for Long-Tailed Image Classification
    Wang, Peng
    Han, Kai
    Wei, Xiu-Shen
    Zhang, Lei
    Wang, Lei
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 943 - 952
  • [4] Anchored Supervised Contrastive Learning for Long-Tailed Medical Image Regression
    Li, Zhaoying
    Xing, Zhaohu
    Liu, Hongying
    Zhu, Lei
    Wan, Liang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XV, 2025, 15045 : 3 - 18
  • [5] Multiple Contrastive Experts for long-tailed image classification
    Wang, Yandan
    Sun, Kaiyin
    Guo, Chenqi
    Zhong, Shiwei
    Liu, Huili
    Ma, Yinglong
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [6] Balanced clustering contrastive learning for long-tailed visual recognition
    Kim, Byeong-il
    Ko, Byoung Chul
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)
  • [7] Balanced complement loss for long-tailed image classification
    Luyu Hu
    Zhao Yang
    Yamei Dou
    Jiahao Li
    Multimedia Tools and Applications, 2024, 83 : 52989 - 53007
  • [8] Balanced complement loss for long-tailed image classification
    Hu, Luyu
    Yang, Zhao
    Dou, Yamei
    Li, Jiahao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (17) : 52989 - 53007
  • [9] Class Instance Balanced Learning for Long-Tailed Classification
    Lavoie, Marc-Antoine
    Waslander, Steven L.
    2023 20TH CONFERENCE ON ROBOTS AND VISION, CRV, 2023, : 121 - 128
  • [10] Multi-expert contrastive learning for remote sensing long-tailed image classification
    Zhang, Lei
    Peng, Lijia
    Yang, Chengwei
    Ding, Xin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2025, 46 (04) : 1517 - 1542