PetFace: A Large-Scale Dataset and Benchmark for Animal Identification

被引:0
|
作者
Shinoda, Risa [1 ]
Shiohara, Kaede [2 ]
机构
[1] Kyoto Univ, Kyoto, Japan
[2] Univ Tokyo, Bunkyo City, Japan
来源
关键词
Animals; Re-identification; Face Recognition;
D O I
10.1007/978-3-031-72649-1_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automated animal face identification plays a crucial role in the monitoring of behaviors, conducting of surveys, and finding of lost animals. Despite the advancements in human face identification, the lack of datasets and benchmarks in the animal domain has impeded progress. In this paper, we introduce the PetFace dataset, a comprehensive resource for animal face identification encompassing 257,484 unique individuals across 13 animal families and 319 breed categories, including both experimental and pet animals. This large-scale collection of individuals facilitates the investigation of unseen animal face verification, an area that has not been sufficiently explored in existing datasets due to the limited number of individuals. Moreover, PetFace also has fine-grained annotations such as sex, breed, color, and pattern. We provide multiple benchmarks including re-identification for seen individuals and verification for unseen individuals. The models trained on our dataset outperform those trained on prior datasets, even for detailed breed variations and unseen animal families. Our result also indicates that there is some room to improve the performance of integrated identification on multiple animal families. We hope the PetFace dataset will facilitate animal face identification and encourage the development of non-invasive animal automatic identification methods. Our dataset and code are available at https://dahlian00.github.io/PetFacePage/.
引用
收藏
页码:19 / 36
页数:18
相关论文
共 50 条
  • [1] Introduction and Analysis of a Large-Scale Benchmark Automatic Vehicle Identification Dataset
    He, Zhaocheng
    Chen, Kaiying
    Chen, Xinyu
    Sun, Weiwei
    INTERNATIONAL CONFERENCE ON TRANSPORTATION AND DEVELOPMENT 2018: CONNECTED AND AUTONOMOUS VEHICLES AND TRANSPORTATION SAFETY, 2018, : 35 - 43
  • [2] ClearPose: Large-scale Transparent Object Dataset and Benchmark
    Chen, Xiaotong
    Zhang, Huijie
    Yu, Zeren
    Opipari, Anthony
    Jenkins, Odest Chadwicke
    COMPUTER VISION, ECCV 2022, PT VIII, 2022, 13668 : 381 - 396
  • [3] SDFC dataset: a large-scale benchmark dataset for hyperspectral image classification
    Sun, Liwei
    Zhang, Junjie
    Li, Jia
    Wang, Yueming
    Zeng, Dan
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (02)
  • [4] SDFC dataset: a large-scale benchmark dataset for hyperspectral image classification
    Liwei Sun
    Junjie Zhang
    Jia Li
    Yueming Wang
    Dan Zeng
    Optical and Quantum Electronics, 2023, 55
  • [5] LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting
    Liu, Xu
    Xia, Yutong
    Liang, Yuxuan
    Hu, Junfeng
    Wang, Yiwei
    Bai, Lei
    Huang, Chao
    Liu, Zhenguang
    Hooi, Bryan
    Zimmermann, Roger
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [6] Collaborative Camouflaged Object Detection: A Large-Scale Dataset and Benchmark
    Zhang, Cong
    Bi, Hongbo
    Xiang, Tian-Zhu
    Wu, Ranwan
    Tong, Jinghui
    Wang, Xiufang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (12) : 1 - 15
  • [7] A Large-scale Benchmark Dataset for Event Recognition in Surveillance Video
    Oh, Sangmin
    Hoogs, Anthony
    Perera, Amitha
    Cuntoor, Naresh
    Chen, Chia-Chih
    Lee, Jong Taek
    Mukherjee, Saurajit
    Aggarwal, J. K.
    Lee, Hyungtae
    Davis, Larry
    Swears, Eran
    Wang, Xioyang
    Ji, Qiang
    Reddy, Kishore
    Shah, Mubarak
    Vondrick, Carl
    Pirsiavash, Hamed
    Ramanan, Deva
    Yuen, Jenny
    Torralba, Antonio
    Song, Bi
    Fong, Anesco
    Roy-Chowdhury, Amit
    Desai, Mita
    2011 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2011,
  • [8] Tenrec: A Large-scale Multipurpose Benchmark Dataset for Recommender Systems
    Yuan, Guanghu
    Yuan, Fajie
    Li, Yudong
    Kong, Beibei
    Li, Shujie
    Chen, Lei
    Yang, Min
    Yu, Chenyun
    Hu, Bo
    Li, Zang
    Xu, Yu
    Qie, Xiaohu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [9] RGBT Salient Object Detection: A Large-Scale Dataset and Benchmark
    Tu, Zhengzheng
    Ma, Yan
    Li, Zhun
    Li, Chenglong
    Xu, Jieming
    Liu, Yongtao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4163 - 4176
  • [10] TrackingNet: A Large-Scale Dataset and Benchmark for Object Tracking in the Wild
    Mueller, Matthias
    Bibi, Adel
    Giancola, Silvio
    Alsubaihi, Salman
    Ghanem, Bernard
    COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 310 - 327