A coupled cellular automaton-finite element model was created to simulate solidification structure growth, which was validated experimentally. Simulations were conducted to examine the temperature distribution and growth of the solidification structure during the initial phase within the mold. Temperatures were measured in four key regions: the wide face center, narrow face center, corner, and hot spot. The growth of the solidification structure in these regions was also simulated. The results revealed uneven solidification areas, temperature distribution, and grain size during the e-arly stages of solidification in the mold. The continuous casting slab's corner showed a thicker shell compared to the wide and narrow face centers, with the shell being thinnest at the hot spot. The lowest temperature was found at the corner, and the highest at the hot spot, leading to a highly uneven temperature distribution near the corner. Grain size was smallest at the corner and largest at the hot spot. To enhance the quality of the continuous casting slab, particular attention must be given to the uneven grain size, temperature, and shell thickness near the hot spot, which are influenced by deviations at the corner. On a cr & eacute;e un mod & egrave;le coupl & eacute; automate cellulaire-& eacute;l & eacute;ments finis pour simuler la croissance d'une structure de solidification, qui a & eacute;t & eacute; valid & eacute; exp & eacute;rimentalement. On a r & eacute;alis & eacute; des simulations pour examiner la r & eacute;partition de la temp & eacute;rature et la croissance de la structure de solidification lors de la phase initiale dans le moule. On a mesur & eacute; les temp & eacute;ratures dans quatre r & eacute;gions cl & eacute;s: au centre de la face large, au centre de la face & eacute;troite, dans le coin et au point chaud. On a & eacute;galement simul & eacute; la croissance de la structure de solidification dans ces r & eacute;gions. Les r & eacute;sultats ont r & eacute;v & eacute;l & eacute; des zones de solidification, une r & eacute;partition de la temp & eacute;rature et une taille de grain in & eacute;gales lors des premi & egrave;res & eacute;tapes de solidification dans le moule. Le coin de la dalle de coul & eacute;e continue a montr & eacute; une coque plus & eacute;paisse que les centres des faces larges et & eacute;troites, la coque & eacute;tant la plus mince au point chaud. La temp & eacute;rature la plus basse se trouvait dans le coin et la plus & eacute;lev & eacute;e, au point chaud, conduisant & agrave; une r & eacute;partition de temp & eacute;rature tr & egrave;s in & eacute;gale pr & egrave;s du coin. La taille des grains la plus petite se trouvait dans le coin et la plus grande, au point chaud. Afin d'am & eacute;liorer la qualit & eacute; des dalles de coul & eacute;e continue, on doit porter une attention particuli & egrave;re & agrave; la taille de grain, & agrave; la temp & eacute;rature et & agrave; l'& eacute;paisseur de la coque in & eacute;gales & agrave; proximit & eacute; du point chaud, qui sont influenc & eacute;es par des d & eacute;viations dans le coin.