Recent Advances in Image Super-Resolution Reconstruction Based on Machine Learning

被引:0
|
作者
Zhang, Qingru [1 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Beijing 100875, Peoples R China
关键词
image super-resolution (SR) reconstruction; machine learning; Markov Decision; Process (MDP); inter-region reward; function; visual coherence; GENERATIVE ADVERSARIAL NETWORK; BREAST RECONSTRUCTION; BODY-IMAGE; FACE;
D O I
10.18280/ts.410627
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image super-resolution (SR) reconstruction is a crucial research area in computer vision, aiming to restore high-resolution images from low-resolution inputs, thereby enhancing image detail and quality. With the continuous growth of digital image applications, SR technology has been widely utilized inAfields such as medical imaging, satellite remote sensing, surveillance video enhancement, and virtual reality. However, despite significant progress in objective image quality, existing SR methods still face challenges such as loss of image details, unnatural textures, and visual inconsistencies. This is especially evident in complex scenes or high-noise environments, where traditional unified models are ineffective in addressing the differences between image regions, resulting in suboptimal reconstruction outcomes. In recent years, deep learning methods, such as Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), have made remarkable strides in the field of SR. However, most methods still overlook the spatial dependencies between different regions of the image. To address this limitation, this paper proposes a SR reconstruction framework based on the Markov Decision Process (MDP) and Deep QNetworks (DQN), which dynamically selects SR models using reinforcement learning principles for adaptive optimization across image regions. Furthermore, aAnew reward function is introduced to resolve the model selection consistency issue across regions, aiming to improve the visual transition between adjacent regions and enhance the overall perceptual quality of the image. Experimental results demonstrate that the proposed framework effectively improves the reconstruction performance of SR images, significantly enhancing visual coherence while maintaining objective quality.
引用
收藏
页码:3109 / 3116
页数:8
相关论文
共 50 条
  • [1] Recent Advances in Deep Learning for Single Image Super-Resolution
    Zhang, Yungang
    Xiang, Yu
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 85 - 95
  • [2] Recent Advances in Structured Illumination Microscope Super-Resolution Image Reconstruction
    Tang Yujun
    Wang Linbo
    Wen Gang
    Li Hui
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (06)
  • [3] TARGET IMAGE PROCESSING BASED ON SUPER-RESOLUTION RECONSTRUCTION AND MACHINE LEARNING ALGORITHM
    Liu, Chunmao
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (03): : 1332 - 1340
  • [4] TARGET IMAGE PROCESSING BASED ON SUPER-RESOLUTION RECONSTRUCTION AND MACHINE LEARNING ALGORITHM
    Liu C.
    Scalable Computing, 2024, 25 (03): : 1332 - 1340
  • [5] TARGET IMAGE PROCESSING BASED ON SUPER-RESOLUTION RECONSTRUCTION AND DEEP MACHINE LEARNING ALGORITHM
    Lin, Yang
    Zhang, Ping
    Zhang, He
    Song, Guoping
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (02): : 961 - 971
  • [6] Super-Resolution Reconstruction of Cytoskeleton Image Based on Deep Learning
    Hu Fen
    Lin Yang
    Hou Mengdi
    Hu Haofeng
    Pan Leiting
    Liu Tiegen
    Xu Jingjun
    ACTA OPTICA SINICA, 2020, 40 (24)
  • [7] Research on Image Super-Resolution Reconstruction Based on Deep Learning
    An, Lingran
    Dai, Fengzhi
    Yuan, Yasheng
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 640 - 643
  • [8] Image super-resolution reconstruction based on deep dictionary learning and A
    Huang, Yi
    Bian, Weixin
    Jie, Biao
    Zhu, Zhiqiang
    Li, Wenhu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (03) : 2629 - 2641
  • [9] Chip Image Super-Resolution Reconstruction Based on Deep Learning
    Fan M.
    Chi Y.
    Zhang M.
    Li Y.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (04): : 353 - 360
  • [10] IMAGE SUPER-RESOLUTION BY EXTREME LEARNING MACHINE
    An, Le
    Bhanu, Bir
    2012 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2012), 2012, : 2209 - 2212