Groupoid-cograded weak multiplier Hopf (∗-)algebras

被引:0
|
作者
Fu, Ruolei [1 ]
Wang, Shuanhong [2 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
[2] Southeast Univ, Shing Tung Yau Ctr, Sch Math, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Weak Hopf algebras; weak multiplier Hopf (& lowast; -)algebras; groupoid-cograded weak Hopf (& lowast; -)algberas; integrals; LARSON-SWEEDLER THEOREM;
D O I
10.1142/S0129167X24500915
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a groupoid and assume that (A(p))(p is an element of G) is a family of algebras with identity. First, we introduce the notion of a weak Hopf (groupoid)G-coalgebra by that if, for each pair p,q is an element of G, there is given a unital homomorphism Delta(p,q) : A(pq) -> A(p)circle times A(q) satisfying certain properties, generalizing the notion of Hopf group-coalgebras as introduced by Turaev from groups to groupoids and Hopf algebra structures to weak Hopf algebra structures. Then one considers now the direct sum A =circle plus(p is an element of G)A(p) of these algebras. It is an algebra, without identity, except when G is a finite groupoid, but the product is non-degenerate. The maps Delta(p,q) can be used to define a coproduct Delta on A and the conditions imposed on these maps give that (A, Delta) is a weak multiplier Hopf algebra. It is G-cograded as explained in this paper. We study these so-called groupoid-cograded weak multiplier Hopf algebras. They are, as explained above, more general than the weak Hopf group-coalgebras (introduced by Van Daele and Wang), generalizing the Turaev's Hopf group-coalgebras. Moreover, our point of view makes it possible to use results and techniques from the theory of weak multiplier Hopf algebras in the study of weak Hopf groupoid-coalgebras (and generalizations).
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Group-cograded multiplier Hopf (*-)algebras
    Abd El-Hafez, A. T.
    Delvaux, L.
    Van Daele, A.
    ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (01) : 77 - 95
  • [2] Quasitriangular (G-cograded) multiplier Hopf algebras
    Delvaux, L
    Van Daele, A
    Wang, SH
    JOURNAL OF ALGEBRA, 2005, 289 (02) : 484 - 514
  • [3] A Lot of Quasitriangular Group-cograded Multiplier Hopf Algebras
    Yang, Tao
    Wang, Shuan-hong
    ALGEBRAS AND REPRESENTATION THEORY, 2011, 14 (05) : 959 - 976
  • [4] A Lot of Quasitriangular Group-cograded Multiplier Hopf Algebras
    Tao Yang
    Shuan-hong Wang
    Algebras and Representation Theory, 2011, 14 : 959 - 976
  • [5] A CLASS OF QUASITRIANGULAR GROUP-COGRADED MULTIPLIER HOPF ALGEBRAS
    Yang, Tao
    Zhou, Xuan
    Zhu, Haixing
    GLASGOW MATHEMATICAL JOURNAL, 2020, 62 (01) : 43 - 57
  • [6] The Drinfel'd double for group-cograded multiplier Hopf algebras
    Delvaux, Lydia
    Van Daele, Alfons
    ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (03) : 197 - 221
  • [7] The Drinfel’d Double for Group-cograded Multiplier Hopf Algebras
    Lydia Delvaux
    Alfons Van Daele
    Algebras and Representation Theory, 2007, 10 : 197 - 221
  • [8] Yetter-Drinfel'd modules for group-cograded multiplier Hopf algebras
    Delvaux, L.
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (08) : 2872 - 2882
  • [9] Weak Multiplier Hopf Algebras II: Source and Target Algebras
    Van Daele, Alfons
    Wang, Shuanhong
    SYMMETRY-BASEL, 2020, 12 (12): : 1 - 34
  • [10] Weak multiplier Hopf algebras I. The main theory
    Van Daele, Alfons
    Wang, Shuanhong
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 705 : 155 - 209