Robust Boundary Stabilization of Stochastic Hyperbolic PDEs

被引:0
|
作者
Zhang, Yihuai [1 ]
Auriol, Jean [3 ]
Yu, Huan [1 ,2 ]
机构
[1] Hong Kong Univ Sci & Technol Guangzhou, Thrust Intelligent Transportat, Guangzhou 511400, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Hong Kong, Peoples R China
[3] Univ Paris Saclay, CNRS, Cent Supelec, Lab Signaux & Syst, Gif Sur Yvette, France
关键词
STABILITY; SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a backstepping boundary control design for robust stabilization of linear first-order coupled hyperbolic partial differential equations (PDEs) with Markov-jumping parameters. The PDE system consists of 4 x 4 coupled hyperbolic PDEs whose first three characteristic speeds are positive and the last one is negative. We first design a full-state feedback boundary control law for a nominal, deterministic system using the backstepping method. Then, by applying Lyapunov analysis methods, we prove that the nominal backstepping control law can stabilize the PDE system with Markov jumping parameters if the nominal parameters are sufficiently close to the stochastic ones on average. The mean-square exponential stability conditions are theoretically derived and then validated via numerical simulations.
引用
收藏
页码:5333 / 5338
页数:6
相关论文
共 50 条
  • [1] Boundary Stabilization for a Class of Hyperbolic PDEs with a Free End
    Li, Xiaoguang
    Liu, Jinkun
    PROCEEDINGS OF THE 2012 SECOND INTERNATIONAL CONFERENCE ON INSTRUMENTATION & MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2012), 2012, : 215 - 218
  • [2] Boundary Stabilization of Complex Coupled Hyperbolic Stochastic Systems
    Gao, Yu
    Jia, Peining
    Wu, Kai-Ning
    Kang, Mingxin
    ADVANCES IN NEURAL NETWORKS-ISNN 2024, 2024, 14827 : 382 - 389
  • [3] Robust output feedback stabilization for two heterodirectional linear coupled hyperbolic PDEs
    Auriol, Jean
    Di Meglio, Florent
    Automatica, 2020, 115
  • [4] Robust output feedback stabilization for two heterodirectional linear coupled hyperbolic PDEs
    Auriol, Jean
    Di Meglio, Florent
    AUTOMATICA, 2020, 115
  • [5] Two-Sided Boundary Stabilization of Heterodirectional Linear Coupled Hyperbolic PDEs
    Auriol, Jean
    Di Meglio, Florent
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (08) : 2421 - 2436
  • [6] Ensembles of Hyperbolic PDEs: Stabilization by Backstepping
    Alleaume, Valentin
    Krstic, Miroslav
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2025, 70 (02) : 905 - 920
  • [7] Two-sided boundary stabilization of two linear hyperbolic PDEs in minimum time
    Auriol, Jean
    Di Meglio, Florent
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 3118 - 3124
  • [8] BOUNDARY REGULARITY OF STOCHASTIC PDES
    Gerencser, Mate
    ANNALS OF PROBABILITY, 2019, 47 (02): : 804 - 834
  • [9] Boundary Estimation of Boundary Parameters for Linear Hyperbolic PDEs
    Bin, Michelangelo
    Di Meglio, Florent
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (08) : 3890 - 3904
  • [10] Adaptive boundary stabilization for first-order hyperbolic PDEs with unknown spatially varying parameter
    Xu, Zaihua
    Liu, Yungang
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (03) : 613 - 628