Wind turbine generator prognostics using field SCADA data

被引:6
|
作者
Peter, Rudolph [1 ]
Zappala, Donatella [1 ]
Schamboeck, Verena [2 ]
Watson, Simon J. [1 ]
机构
[1] Delft Univ Technol, Kluyverweg 1, NL-2629 HS Delft, Netherlands
[2] Vattenfall, Hoekenrode 8, NL-1102 BR Amsterdam, Netherlands
关键词
D O I
10.1088/1742-6596/2265/3/032111
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper presents a novel prognostic method to estimate the remaining useful life (RUL) of generators using the SCADA (Supervisory Control And Data Acquisition) systems installed in wind turbines. A data-driven wind turbine anomaly classification method is developed. The anomalies are quantified into a health indicator to measure the component degradation over time. An Autoregressive Integrated Moving Average (ARIMA) time series forecasting technique is then applied to predict the RUL of the wind turbine generator. The proposed method has been validated using industry field data showing accurate predictions of RUL with a 21 day lead time for maintenance of the turbine.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fault Prognosis of Wind Turbine Generator Using SCADA Data
    Zhao, Yingying
    Li, Dongsheng
    Dong, Ao
    Lin, Jiajia
    Kang, Dahai
    Shang, Li
    2016 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2016,
  • [2] Wind Turbine Failure Prediction Using SCADA Data
    Lima, L. A. M.
    Blatt, A.
    Fujise, J.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618
  • [3] Boosting field data using synthetic SCADA datasets for wind turbine condition monitoring
    Milani, Ali Eftekhari
    Zappala, Donatella
    Castellani, Francesco
    Watson, Simon
    SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2024, 2024, 2767
  • [4] Data-Driven wind turbine performance assessment and quantification using SCADA data and field measurements
    Ding, Yu
    Barber, Sarah
    Hammer, Florian
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [5] Using SCADA data for wind turbine condition monitoring - a review
    Tautz-Weinert, Jannis
    Watson, Simon J.
    IET RENEWABLE POWER GENERATION, 2017, 11 (04) : 382 - 394
  • [6] Hierarchical method for wind turbine prognosis using SCADA data
    Chen, Niya
    Yu, Rongrong
    Chen, Yao
    Xie, Hailian
    IET RENEWABLE POWER GENERATION, 2017, 11 (04) : 403 - 410
  • [7] Wind Turbine Condition Monitoring Using SCADA Data and Data Mining Method
    Pei, Yan
    Qian, Zheng
    Tao, Siyu
    Yu, Hao
    2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2018, : 3760 - 3764
  • [8] Fault Prediction and Diagnosis of Wind Turbine Generators Using SCADA Data
    Zhao, Yingying
    Li, Dongsheng
    Dong, Ao
    Kang, Dahai
    Lv, Qin
    Shang, Li
    ENERGIES, 2017, 10 (08)
  • [9] Condition Monitoring of Wind Turbine Generators Using SCADA Data Analysis
    Jin, Xiaohang
    Xu, Zhuangwei
    Qiao, Wei
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2021, 12 (01) : 202 - 210
  • [10] Life extension of wind turbine drivetrains by means of SCADA data: Case study of generator bearings in an onshore wind farm
    Tartt, Kelly
    Kazemi-Amiri, Abbas Mehrad
    Nejad, Amir R.
    Carroll, James
    McDonald, Alasdair
    RESULTS IN ENGINEERING, 2024, 24