Multilevel Few-Shot Model With Selective Aggregation Feature for Bearing Fault Diagnosis Under Limited Data Condition

被引:0
|
作者
Vu, Manh-Hung [1 ]
Tran, Thi-Thao [1 ]
Pham, Van-Truong [1 ]
Lo, Men-Tzung [2 ]
机构
[1] Hanoi Univ Sci & Technol, Dept Automat Engn, Hanoi, Vietnam
[2] Natl Cent Univ, Dept Biomed Sci & Engn, Hanoi, Taiwan
关键词
Sensor applications; few-shot learning; fault bearing diagnosis; spatial-level and channel-level; selective aggregation feature;
D O I
10.1109/LSENS.2024.3500785
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Diagnosing bearing faults is an important issue in the field of electrical machines, where approximately 40$\%$ of faults in electrical machines are caused by bearings. With the development of deep learning, diagnosing bearing faults from vibration signals helps reduce costs and time while increasing diagnostic accuracy. However, traditional deep learning models need to be trained from large and diverse datasets to be able to provide good diagnostic results, which is not suitable for specific data such as bearings because it can be difficult to collect data and require expensive resources. In this letter, a new diagnostic method is proposed based on few-shot learning to overcome the data problem. The proposed method synthesizes information from both spatial-level and channel-level to find information in the condition of only little training data, improving diagnostic accuracy. Besides, selective aggregation feature extraction is proposed to replace the traditional convolution neural network to extract condensed features that carry more information. For instance, with only 30 training samples, the model achieves 86.67% accuracy on the CWRU dataset, this suggested method obtains State-of-the-Art results, demonstrating its efficacy.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Limited Data Rolling Bearing Fault Diagnosis With Few-Shot Learning
    Zhang, Ansi
    Li, Shaobo
    Cui, Yuxin
    Yang, Wanli
    Dong, Rongzhi
    Hu, Jianjun
    IEEE ACCESS, 2019, 7 : 110895 - 110904
  • [2] Fault Diagnosis for Rolling Bearings of a Freight Train under Limited Fault Data: Few-Shot Learning Method
    Li, Chenzhong
    Yang, Kanghua
    Tang, Haichuan
    Wang, Ping
    Li, Jiebo
    He, Qing
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2021, 147 (08)
  • [3] ENFES: ENsemble FEw-Shot Learning For Intelligent Fault Diagnosis with Limited Data
    Gungor, Onat
    Rosing, Tajana
    Aksanli, Baris
    2021 IEEE SENSORS, 2021,
  • [4] Recursive prototypical network with coordinate attention: A model for few-shot cross-condition bearing fault diagnosis
    Jiang, Yonghua
    Qiu, Zengjie
    Zheng, Linjie
    Dong, Zhilin
    Jiao, Weidong
    Tang, Chao
    Sun, Jianfeng
    Xuan, Zhongyi
    APPLIED ACOUSTICS, 2025, 231
  • [5] Unified feature learning network for few-shot fault diagnosis
    Xu, Yan
    Ma, Xinyao
    Wang, Xuan
    Wang, Jinjia
    Tang, Gang
    Ji, Zhong
    NEUROCOMPUTING, 2024, 598
  • [6] Research on fault diagnosis of supercharged boiler with limited data based on few-shot learning
    Li, Guolong
    Li, Yanjun
    Fang, Chengyue
    Su, Jian
    Wang, Haotong
    Sun, Shengdi
    Zhang, Guolei
    Shi, Jianxin
    ENERGY, 2023, 281
  • [7] Metric-based meta-learning model for few-shot fault diagnosis under multiple limited data conditions
    Wang, Duo
    Zhang, Ming
    Xu, Yuchun
    Lu, Weining
    Yang, Jun
    Zhang, Tao
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 155
  • [8] Category knowledge-guided few-shot bearing fault diagnosis
    Zhan, Feng
    Hu, Lingkai
    Huang, Wenkai
    Dong, Yikai
    He, Hao
    Wu, Guanjun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [9] Few-shot transfer learning with attention for intelligent fault diagnosis of bearing
    Yao Hu
    Qingyu Xiong
    Qiwu Zhu
    Zhengyi Yang
    Zhiyuan Zhang
    Dan Wu
    Zihui Wu
    Journal of Mechanical Science and Technology, 2022, 36 : 6181 - 6192
  • [10] Few-shot transfer learning with attention for intelligent fault diagnosis of bearing
    Hu, Yao
    Xiong, Qingyu
    Zhu, Qiwu
    Yang, Zhengyi
    Zhang, Zhiyuan
    Wu, Dan
    Wu, Zihui
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (12) : 6181 - 6192