Automated identification of Chagas disease vectors using AlexNet pre-trained convolutional neural networks

被引:0
|
作者
Miranda, Vinicius L. [1 ]
Oliveira-Correia, Joao P. S. [2 ]
Galvao, Cleber [2 ]
Obara, Marcos T. [1 ]
Peterson, A. Townsend [3 ]
Gurgel-Goncalves, Rodrigo [1 ]
机构
[1] Univ Brasilia, Fac Med, Lab Parasitol Med & Biol Vetores, Brasilia, Brazil
[2] Inst Oswaldo Cruz, Lab Nacl & Int Referencia Taxon Triatomineos, Rio De Janeiro, Brazil
[3] Univ Kansas, Biodivers Inst, Lawrence, KS USA
关键词
citizen science; deep learning; entomological surveillance; Triatominae; TRIATOMA-BRASILIENSIS; HEMIPTERA; REDUVIIDAE; BRAZIL; CLASSIFICATION; SYSTEMATICS;
D O I
10.1111/mve.12780
中图分类号
Q96 [昆虫学];
学科分类号
摘要
The 158 bug species that make up the subfamily Triatominae are the potential vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Despite recent progress in developing a picture-based automated system for identification of triatomines, an extensive and diverse image database is required for a broadly useful automated application for identifying these vectors. We evaluated performance of a deep-learning network (AlexNet) for identifying triatomine species from a database of dorsal images of adult insects. We used a sample of photos of 6397 triatomines belonging to seven genera and 65 species from 27 countries. AlexNet had an accuracy of similar to 0.93 (95% confidence interval [CI], 0.91-0.94) for identifying triatomine species from pictures of varying resolutions. Highest specific accuracy was observed for 21 species in the genera Rhodnius and Panstrongylus. AlexNet performance improved to similar to 0.95 (95% CI, 0.93-0.96) when only the species with highest vectorial capacity were considered. These results show that AlexNet, when trained with a large, diverse, and well-structured picture set, exhibits excellent performance for identifying triatomine species. This study contributed to the development of an automated Chagas disease vector identification system.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Classification of Deepfake Videos Using Pre-trained Convolutional Neural Networks
    Masood, MomMa
    Nawaz, Marriam
    Javed, Ali
    Nazir, Tahira
    Mehmood, Awais
    Mahum, Rabbia
    2021 INTERNATIONAL CONFERENCE ON DIGITAL FUTURES AND TRANSFORMATIVE TECHNOLOGIES (ICODT2), 2021,
  • [2] Automatic variogram inference using pre-trained Convolutional Neural Networks
    Karim, Mokdad
    Behrang, Koushavand
    Jeff, Boisvert
    APPLIED COMPUTING AND GEOSCIENCES, 2025, 25
  • [3] Efficient Aspect Object Models Using Pre-trained Convolutional Neural Networks
    Wilkinson, Eric
    Takahashi, Takeshi
    2015 IEEE-RAS 15TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2015, : 284 - 289
  • [4] The Impact of Padding on Image Classification by Using Pre-trained Convolutional Neural Networks
    Tang, Hongxiang
    Ortis, Alessandro
    Battiato, Sebastiano
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 : 337 - 344
  • [5] Pre-trained Convolutional Neural Networks for the Lung Sounds Classification
    Vaityshyn, Valentyn
    Porieva, Hanna
    Makarenkova, Anastasiia
    2019 IEEE 39TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2019, : 522 - 525
  • [6] Classification of Chronic Obstructive Pulmonary Disease using CT Images and Pre-trained Convolutional Neural Networks
    Rezvanjou, Sara
    Moslemi, Amir
    Tan, Wan-Cheng
    Hogg, James C.
    Bourbeau, Jean
    Kirby, Miranda
    MEDICAL PHYSICS, 2022, 49 (08) : 5682 - 5682
  • [7] Performance Investigation of Pre-Trained Convolutional Neural Networks in Olive Leaf Disease Classification
    Dikici, Bunyamin
    Bekciogullari, Mehmet Fatih
    Acikgoz, Hakan
    Korkmaz, Deniz
    KONYA JOURNAL OF ENGINEERING SCIENCES, 2022, 10 (03): : 535 - 547
  • [8] CONVOLUTIONAL NEURAL NETWORKS FOR DIALOGUE STATE TRACKING WITHOUT PRE-TRAINED WORD VECTORS OR SEMANTIC DICTIONARIES
    Korpusik, Mandy
    Glass, James
    2018 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2018), 2018, : 884 - 891
  • [9] Pre-Trained Convolutional Neural Networks for Breast Cancer Detection Using Ultrasound Images
    Masud, Mehedi
    Hossain, M. Shamim
    Alhumyani, Hesham
    Alshamrani, Sultan S.
    Cheikhrouhou, Omar
    Ibrahim, Saleh
    Muhammad, Ghulam
    Rashed, Amr E. Eldin
    Gupta, B. B.
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2021, 21 (04)
  • [10] Painting Classification Using a Pre-trained Convolutional Neural Network
    Banerji, Sugata
    Sinha, Atreyee
    COMPUTER VISION, GRAPHICS, AND IMAGE PROCESSING, ICVGIP 2016, 2017, 10481 : 168 - 179