Developing an automated algorithm for identification of children and adolescents with diabetes using electronic health records from the OneFlorida plus clinical research network

被引:0
|
作者
Li, Piaopiao [1 ]
Spector, Eliot [2 ]
Alkhuzam, Khalid [1 ]
Patel, Rahul [1 ]
Donahoo, William T. [3 ]
Bost, Sarah [2 ]
Lyu, Tianchen [2 ]
Wu, Yonghui [2 ]
Hogan, William [2 ]
Prosperi, Mattia [2 ]
Dixon, Brian E. [4 ]
Dabelea, Dana [5 ]
Utidjian, Levon H. [6 ]
Crume, Tessa L. [7 ]
Thorpe, Lorna [8 ]
Liese, Angela D. [9 ]
Schatz, Desmond A. [10 ]
Atkinson, Mark A. [11 ]
Haller, Michael J. [10 ]
Shenkman, Elizabeth A. [2 ]
Guo, Yi [2 ]
Bian, Jiang [2 ]
Shao, Hui [1 ,12 ,13 ]
机构
[1] Univ Florida, Coll Pharm, Dept Pharmaceut Outcomes & Policy, Gainesville, FL USA
[2] Univ Florida, Coll Med, Dept Hlth Outcomes & Biomed Informat, Gainesville, FL USA
[3] Univ Florida, Coll Med, Div Endocrinol Diabet & Metab, Gainesville, FL USA
[4] Indiana Univ IU Richard M, Fairbanks Sch Publ Hlth, Dept Epidemiol, Indianapolis, IN USA
[5] Univ Colorado Anschutz Med Campus, Lifecourse Epidemiol Adipos & Diabet Ctr, Aurora, CO USA
[6] Childrens Hosp Philadelphia, Dept Biomed & Hlth Informat, Div Gen Paediat, Philadelphia, PA USA
[7] Univ Colorado Anschutz Med Campus, LEAD Ctr, Colorado Sch Publ Hlth, Dept Epidemiol, Aurora, CO USA
[8] NYU Langone Hlth, Dept Populat Hlth, New York, NY USA
[9] Univ South Carolina, Arnold Sch Publ Hlth, Dept Epidemiol & Biostat, Columbia, SC USA
[10] Univ Florida, Dept Paediat, Coll Med, Gainesville, FL USA
[11] Univ Florida, Diabet Inst, Gainesville, FL USA
[12] Emory Univ, Rollin Sch Publ Hlth, Hubert Dept Global Hlth, Atlanta, GA USA
[13] Emory Univ, Sch Med, Dept Family & Prevent Med, Atlanta, GA USA
来源
DIABETES OBESITY & METABOLISM | 2025年 / 27卷 / 01期
基金
美国国家卫生研究院;
关键词
database research; real-world evidence; type; 1; diabetes; 2; PRIMARY-CARE; TYPE-1; CLASSIFICATION; VALIDATION; SPECIFICITY; SENSITIVITY; PREVALENCE; SEARCH; TRENDS; US;
D O I
10.1111/dom.15987
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aim: To develop an automated computable phenotype (CP) algorithm for identifying diabetes cases in children and adolescents using electronic health records (EHRs) from the UF Health System. Materials and Methods: The CP algorithm was iteratively derived based on structured data from EHRs (UF Health System 2012-2020). We randomly selected 536 presumed cases among individuals aged <18 years who had (1) glycated haemoglobin levels >= 6.5%; or (2) fasting glucose levels >= 126 mg/dL; or (3) random plasma glucose levels >= 200 mg/dL; or (4) a diabetes-related diagnosis code from an inpatient or outpatient encounter; or (5) prescribed, administered, or dispensed diabetes-related medication. Four reviewers independently reviewed the patient charts to determine diabetes status and type. Results: Presumed cases without type 1 (T1D) or type 2 diabetes (T2D) diagnosis codes were categorized as non-diabetes/other types of diabetes. The rest were categorized as T1D if the most recent diagnosis was T1D, or otherwise categorized as T2D if the most recent diagnosis was T2D. Next, we applied a list of diagnoses and procedures that can determine diabetes type (e.g., steroid use suggests induced diabetes) to correct misclassifications from Step 1. Among the 536 reviewed cases, 159 and 64 had T1D and T2D, respectively. The sensitivity, specificity, and positive predictive values of the CP algorithm were 94%, 98% and 96%, respectively, for T1D and 95%, 95% and 73% for T2D. Conclusion: We developed a highly accurate EHR-based CP for diabetes in youth based on EHR data from UF Health. Consistent with prior studies, T2D was more difficult to identify using these methods.
引用
收藏
页码:102 / 110
页数:9
相关论文
共 50 条
  • [1] Developing a Computable Phenotype Algorithm for Identification of Children and Adolescents with Diabetes Using Electronic Health Records
    Li, Piaopiao
    Spector, Eliot
    Alkhuzam, Khalid
    Patel, Rahul S.
    Donahoo, William T.
    Bost, Sarah
    Lyu, Tianchen
    Wu, Yonghui
    Hogan, William
    Prosperi, Mattia
    Dixon, Brian E.
    Dabelea, Dana
    Utidjian, Levon H.
    Crume, Tessa L.
    Thorpe, Lorna
    Liese, Angela D.
    Schatz, Desmond
    Atkinson, Mark A.
    Haller, Michael J.
    Shenkman, Elizabeth
    Bian, Jiang
    Guo, Yi
    Shao, Hui
    Atkinson, Mark A.
    DIABETES, 2022, 71
  • [2] Developing Computable Phenotypes (CPs) for Identifying Children, Adolescents, and Young Adults with Diabetes Using Electronic Health Records in the DiCAYA Network
    Shao, Hui
    Guo, Yi
    Bian, Jiang
    Li, Piaopiao
    Dabelea, Dana
    Conway, Rebecca B.
    Crume, Tessa L.
    Schwartz, Brian S.
    Hirsch, Annemarie G.
    Dixon, Brian E.
    Lustigova, Eva
    Rosenman, Marc
    Zhong, Victor W.
    Conderino, Sarah
    Divers, Jasmin
    Thorpe, Lorna
    Liese, Angela D.
    Rudisill, Caroline
    Obeid, Jihad S.
    Pavkov, Meda E.
    Imperatore, Giuseppina
    Ewing, Joseph A.
    DIABETES, 2023, 72
  • [3] Developing Quality Scores for Electronic Health Records for Clinical Research
    Tate, A. Rosemary
    Beloff, Natalia
    Williams, Timothy
    Puri, Shivani
    van Staa, Tjeerd
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2012, 21 : 305 - 305
  • [4] Using electronic health records to enhance surveillance of diabetes in children, adolescents and young adults: a study protocol for the DiCAYA Network
    Hirsch, Annemarie G.
    Conderino, Sarah
    Crume, Tessa L.
    Liese, Angela D.
    Bellatorre, Anna
    Bendik, Stefanie
    Divers, Jasmin
    Anthopolos, Rebecca
    Dixon, Brian E.
    Guo, Yi
    Imperatore, Giuseppina
    Lee, David C.
    Reynolds, Kristi
    Rosenman, Marc
    Shao, Hui
    Utidjian, Levon
    Thorpe, Lorna E.
    BMJ OPEN, 2024, 14 (01):
  • [5] Using electronic health records data for clinical research
    Wu, Li-Tzy T.
    Spratt, Susan
    Heidenfelder, Brooke
    Tai, Betty
    Ghitza, Udi
    DRUG AND ALCOHOL DEPENDENCE, 2017, 171 : E219 - E219
  • [6] Identification of patients with epilepsy using automated electronic health records phenotyping
    Fernandes, Marta
    Cardall, Aidan
    Jing, Jin
    Ge, Wendong
    Moura, Lidia M. V. R.
    Jacobs, Claire
    McGraw, Christopher
    Zafar, Sahar F.
    Westover, M. Brandon
    EPILEPSIA, 2023, 64 (06) : 1472 - 1481
  • [7] Validation and algorithm for children intussusception identification using electronic health records of Ningbo city in China
    Deng, Siwei
    Liu, Zhike
    Yang, Junting
    Zhang, Liang
    Shou, Tiejun
    Zhu, Jianming
    He, Yan
    Ma, Rui
    Li, Ning
    Xu, Guozhang
    Zhan, Siyan
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2023, 32 : 641 - 641
  • [8] Identification of Type 1 Diabetes by an Electronic Health Records Algorithm from the CURE-CKD Registry
    Greenbaum, Carla
    Reynolds, Christina L.
    Jones, Cami
    Kornowske, Lindsey
    Daratha, Kenn B.
    Alicic, Radica Z.
    Neumiller, Joshua J.
    Tuttle, Katherine R.
    DIABETES, 2024, 73
  • [9] Initial Antihypertensive Regimens in Newly Treated Patients: Real World Evidence From the OneFlorida plus Clinical Research Network
    Smith, Steven M.
    Winterstein, Almut G.
    Gurka, Matthew J.
    Walsh, Marta G.
    Keshwani, Shailina
    Libby, Anne M.
    Hogan, William R.
    Pepine, Carl J.
    Cooper-DeHoff, Rhonda M.
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2023, 12 (01):
  • [10] AUTOMATED IDENTIFICATION OF TRIGGERS FROM THE GLOBAL TRIGGER TOOL IN ELECTRONIC HEALTH RECORDS
    Mevik, K.
    Hansen, T. E.
    Ringdal, A.
    Vonen, B.
    INTERNATIONAL JOURNAL FOR QUALITY IN HEALTH CARE, 2016, 28 : 32 - 32