The role of ion-scale micro-turbulence in pedestal width of the DIII-D wide-pedestal QH mode

被引:0
|
作者
Li, Zeyu [1 ]
Chen, Xi [1 ]
Jian, Xiang [1 ,2 ]
Ernst, Darin [3 ]
Xu, Xueqiao [4 ]
Groebner, R. J. [1 ]
Wang, Huiqian [1 ]
Osborne, T. H. [1 ]
Burrell, K. H. [1 ]
机构
[1] Gen Atom, 3055 Gen Atom Court, San Diego, CA 92121 USA
[2] Chinese Acad Sci, Beijing, Peoples R China
[3] MIT CSAIL, Cambridge, MA USA
[4] Lawrence Livermore Natl Lab, Livermore, CA USA
关键词
tokamak; wide pedestal QH mode; pedestal structure; micro-turbulence;
D O I
10.1088/1741-4326/ad91c6
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The low-edge rotation, intrinsically ELM-free, and improved confinement wide-pedestal quiescent H-mode (QH-mode), discovered in DIII-D tokamak, has pedestal widths exceeding the EPED-kinetic-ballooning mode (KBM) model scaling typically by at least 25%. Ion-scale ( k(y)rho(s) < 1) microturbulence and its role in setting the pedestal structure is investigated using the radially local delta f gyrokinetic code CGYRO. The electromagnetic trapped electron mode (TEM) is unstable at the pedestal top, while plasma beta ( beta(e) ) is similar to 60% below the KBM onset threshold and the electron temperature gradient mode is found to be unstable in the peak gradient region. Nonlinear simulation reveals that the ion-scale turbulence could produce electron energy flux consistent with the flux inferred from power balance at the pedestal top, with a reasonable variation of the local E x B shearing rate; and the local neoclassical transport from NEO is dominant over the simulated turbulent transport in the ion energy flux channel. The simulated ion-scale turbulence produces much lower electron energy flux than inferred from experiment in the pedestal peak gradient region. A correction to the EPED-KBM pedestal width scaling is obtained based on the two-dimensional scan of pedestal top plasma beta ( beta(e) ) and normalized electron density and temperature scale lengths, a/Ln(e), a/LTe using CGYRO linear simulations. Mode transitions among TEM, micro-tearing mode, ion-temperature gradient mode and KBM, are observed in the 2D scan at the pedestal top. A fixed normalized growth rate for these drift-type modes is taken to determine the pedestal width scaling, which shows good consistency with the QH experimental database on pedestal heights and widths. The onset of KBM instabilities and the local E x B shear suppression criterion set the lower and upper limit for the pedestal width of standard QH-mode, wide-pedestal QH-mode and type-I ELMy H mode. A potentially higher and wider pedestal is expected from the new scaling of pedestal width. This work presents an improved understanding of the ion-scale micro-turbulence of wide-pedestal QH-mode and sheds light on a promising scenario for future reactors, including ITER and beyond.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Numerical modeling of pedestal stability and broadband turbulence of wide-pedestal QH-mode plasmas on DIII-D
    Li, Zeyu
    Chen, Xi
    Muscatello, C. M.
    Burrell, K. H.
    Xu, Xueqiao
    Zhu, Ben
    Hong, Rongjie
    Osborne, T. H.
    Grierson, B. A.
    Rhodes, T. L.
    Xia, T. Y.
    McKee, G. R.
    Yan, Z.
    Yu, Guanying
    NUCLEAR FUSION, 2022, 62 (07)
  • [2] Pedestal profiles during QH-mode operation on DIII-D
    West, WP
    Lasnier, CJ
    Casper, TA
    Osborne, TH
    Burrell, KH
    Snyder, PB
    Thomas, DM
    Doyle, EJ
    Leonard, AW
    PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 : A179 - A186
  • [3] Stationary QH-mode plasmas with high and wide pedestal at low rotation on DIII-D
    Chen, Xi
    Burrell, K. H.
    Osborne, T. H.
    Solomon, W. M.
    Barada, K.
    Garofalo, A. M.
    Groebner, R. J.
    Luhmann, N. C.
    McKee, G. R.
    Muscatello, C. M.
    Ono, M.
    Petty, C. C.
    Porkolab, M.
    Rhodes, T. L.
    Rost, J. C.
    Snyder, P. B.
    Staebler, G. M.
    Tobias, B. J.
    Yan, Z.
    NUCLEAR FUSION, 2017, 57 (02)
  • [4] Impact of shape on pedestal characteristics in the wide pedestal quiescent H-mode in the DIII-D tokamak
    Wilks, T. M.
    Morton, L. A.
    Kriete, D. M.
    Knolker, M.
    Snyder, P. B.
    Barada, K.
    Paz-Soldan, C.
    Rhodes, T.
    Burrell, K. H.
    Chen, X.
    Hughes, J. W.
    NUCLEAR FUSION, 2021, 61 (03)
  • [5] Characterizing impurity sourcing and transport in the high temperature boundary of DIII-D wide pedestal QH-mode plasmas
    Ma, X.
    Abrams, T.
    Ernst, D. R.
    Wang, H. Q.
    Bortolon, A.
    Chen, X.
    Odstrcil, T.
    Osborne, T.
    Scotti, F.
    Thomas, D. M.
    Truong, D.
    Watkins, J.
    NUCLEAR FUSION, 2025, 65 (02)
  • [6] Expanding the parameter space of the wide-pedestal QH-mode towards ITER conditions
    Chen, Xi
    Burrell, K. H.
    Osborne, T. H.
    Barada, K.
    Ernst, D.
    Grierson, B. A.
    McKee, G. R.
    Odstricil, T.
    Paz-Soldan, C.
    Petty, C. C.
    Rhodes, T. L.
    Solomon, W. M.
    Wilks, T. M.
    Yan, Z.
    NUCLEAR FUSION, 2020, 60 (09)
  • [7] Role of neutrals in density pedestal formation in DIII-D
    Groebner, RJ
    Mahdavi, MA
    Leonard, AW
    Osborne, TH
    Porter, GD
    PLASMA PHYSICS AND CONTROLLED FUSION, 2002, 44 : A265 - A272
  • [8] Temporal evolution of H-mode pedestal in DIII-D
    Groebner, R. J.
    Osborne, T. H.
    Leonard, A. W.
    Fenstermacher, M. E.
    NUCLEAR FUSION, 2009, 49 (04)
  • [9] Modification of high mode pedestal instabilities in the DIII-D tokamak
    Ferron, JR
    Chu, MS
    Jackson, GL
    Lao, LL
    Miller, RL
    Osborne, TH
    Snyder, PB
    Strait, EJ
    Taylor, TS
    Turnbull, AD
    Garofalo, AM
    Makowski, MA
    Rice, BW
    Chance, MS
    Baylor, LR
    Murakami, M
    Wade, MR
    PHYSICS OF PLASMAS, 2000, 7 (05) : 1976 - 1983
  • [10] Limits to the H-mode pedestal pressure gradient in DIII-D
    Groebner, R. J.
    Snyder, P. B.
    Osborne, T. H.
    Leonard, A. W.
    Rhodes, T. L.
    Zeng, L.
    Unterberg, E. A.
    Yan, Z.
    McKee, G. R.
    Lasnier, C. J.
    Boedo, J. A.
    Watkins, J. G.
    NUCLEAR FUSION, 2010, 50 (06)