A quantitative hydrodynamic limit of the Kawasaki dynamics

被引:0
|
作者
Dizdar, Deniz [1 ]
Menz, Georg [2 ]
Otto, Felix [3 ]
Wu, Tianqi [4 ]
机构
[1] Univ Montreal, Montreal, PQ, Canada
[2] UCLA, Los Angeles, CA USA
[3] Max Planck Inst Math Sci, Berlin, Germany
[4] Technion, Haifa, Israel
来源
关键词
two-scale approach; logarithmic Sobolev inequality; spin system; Kawasaki dynamics; canonical ensemble; coarse-graining; splines; Galerkin approximation; LOGARITHMIC SOBOLEV INEQUALITIES; GAMMA-CONVERGENCE; EQUILIBRIUM FLUCTUATIONS; LARGE-DEVIATIONS; 2-SCALE APPROACH; GRADIENT FLOWS;
D O I
10.1214/24-EJP1248
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive a rate of convergence to the hydrodynamic limit of the Kawasaki dynamics for a one-dimensional lattice spin system as considered by Guo, Papanicolaou and Varadhan. We follow the two-scale approach of Grunewald, Villani, Westdickenberg, and the middle author. However, we use a different coarse-graining operator that allows us to leverage the gradient flow structure. As a consequence, we obtain a better convergence rate.
引用
收藏
页数:58
相关论文
共 50 条
  • [1] Hydrodynamic limit of the Schelling model with spontaneous Glauber and Kawasaki dynamics
    Barret, Florent
    Torri, Niccolo
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [2] Hydrodynamic Limit of the Kawasaki Dynamics on the 1d-lattice with Strong, Finite-Range Interaction
    Younghak Kwon
    Georg Menz
    Kyeongsik Nam
    Annales Henri Poincaré, 2023, 24 : 2483 - 2536
  • [3] Hydrodynamic Limit of the Kawasaki Dynamics on the 1d-lattice with Strong, Finite-Range Interaction
    Kwon, Younghak
    Menz, Georg
    Nam, Kyeongsik
    ANNALES HENRI POINCARE, 2023, 24 (07): : 2483 - 2536
  • [4] HYDRODYNAMIC LIMIT OF ORDER-BOOK DYNAMICS
    Gao, Xuefeng
    Deng, S. J.
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2018, 32 (01) : 96 - 125
  • [5] Results About the Free Kawasaki Dynamics of Continuous Particle Systems in Infinite Volume: Long-time Asymptotics and Hydrodynamic Limit
    Kondratiev, Yuri G.
    Kuna, Tobias
    Oliveira, Maria Joao
    da Silva, Jose Luis
    Streit, Ludwig
    FROM PARTICLE SYSTEMS TO PARTIAL DIFFERENTIAL EQUATIONS, PSPDE X 2022, 2024, 465 : 149 - 185
  • [6] Hydrodynamic Limit Equation for a Lozenge Tiling Glauber Dynamics
    Benoît Laslier
    Fabio Lucio Toninelli
    Annales Henri Poincaré, 2017, 18 : 2007 - 2043
  • [7] Hydrodynamic Limit Equation for a Lozenge Tiling Glauber Dynamics
    Laslier, Benoit
    Toninelli, Fabio Lucio
    ANNALES HENRI POINCARE, 2017, 18 (06): : 2007 - 2043
  • [8] Dynamics of large deviations in the hydrodynamic limit: Noninteracting systems
    Perfetto, Gabriele
    Gambassi, Andrea
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [9] VANDERWAALS LIMIT AND PHASE-SEPARATION IN A PARTICLE MODEL WITH KAWASAKI DYNAMICS
    GIACOMIN, G
    JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (1-2) : 217 - 234
  • [10] Fast-reaction limit for Glauber-Kawasaki dynamics with two components
    De Masi, A.
    Funaki, T.
    Presutti, E.
    Vares, M. E.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2019, 16 (02): : 957 - 976