Pulmonary hypertension (PH) is a serious disease characterized by elevated pulmonary artery pressure, with its prevalence and incidence continuously increasing, posing a threat to the lives of many patients worldwide. Due to the complex etiology of PH and the lack of specificity in clinical manifestations, there is currently a lack of effective and specific methods for early diagnosis in clinical practice. Biosensors hold significant promise for the early detection, therapeutic monitoring, prognostic evaluation, and personalized treatment of PH, owing to their rapid, sensitive, and highly selective characteristics. The rapid development of various types of biosensors, such as electrochemical biosensors, optical biosensors, microfluidic biosensors, and wireless biosensors, combined with the use of nanomaterials, makes the rapid and accurate detection of PH-related biomarkers possible. Despite the broad application prospects of biosensors in the field of PH, challenges remain in terms of sensitivity, selectivity, stability, and regulation. This article reviews the main pathophysiological mechanisms and commonly used biomarkers of PH, the types and principles of biosensors, and summarizes the progress of biosensors in PH research as well as the current challenges, in order to promote further in-depth research and the development of biosensor technology, thereby improving the diagnosis and treatment effects of PH.