Experimental evaluation of gas production from hydrate-bearing sediments via combined hydraulic fracturing and depressurization method

被引:0
|
作者
Wang, Peng [1 ]
Wang, Lujun [1 ,2 ]
Kong, Deqiong [1 ,2 ]
Tang, Zijie [1 ]
Ye, Zhigang [1 ]
Zhu, Bin [1 ,2 ]
Chen, Yunmin [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Civil Engn & Architecture, Ctr Hypergrav Expt & Interdisciplinary Res, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Coll Civil Engn & Architecture, MOE Key Lab Soft Soils & Geoenvironm Engn, Hangzhou 310058, Peoples R China
来源
关键词
Hydrate-bearing sediments (HBS); Gas production; Hydraulic fracturing; Vertical well; Depressurization; Sand production; NANKAI TROUGH; CO2; HYDRATE; METHANE; DISSOCIATION; RESERVOIR; METHYLCELLULOSE; CELLULOSE; BEHAVIOR; CH4;
D O I
10.1016/j.jgsce.2025.205566
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Marine hydrate-bearing sediments (HBS) in the Nankai Trough and the South China Sea, characterized by high fines content and high hydrate saturation, are typically associated with very low porosity and permeability, which greatly undermines the hydrate exploitation efficiency. Inspired by the exploitation techniques of coals and shale gases, hydraulic fracturing could potentially be an effective way to improve the overall permeability of HBS and accordingly its gas production efficiency. This paper introduces a novel experimental study on the enhancement of gas production from HBS via combined hydraulic fracturing and depressurization method. The main properties examined are the viscosity of fracturing fluid and the perforated length of production well. Substantial improvement in gas production by hydraulic fracturing was observed, in terms of both the peak and long-term production rates. The most remarkable increase in peak production rate can be up to 90.4% and only half the time was required to achieve a total gas production of 70%. The optimal fluid viscosity of 500 mPa & sdot;s was identified in the present experiments. Fracturing fluids with lower viscosities would lead to only small fractures and limited increase in the overall permeability, while that with higher viscosities somewhat inhibit gas flow along fractures, both against the achievement of high gas production efficiency. In particular, sediment subsidence and sand production would be exacerbated at the presence of hydraulic fractures. Furthermore, a greater well perforated length was conductive to fracturing fluid discharge and thus facilitating gas production efficiency, in terms of not only shortening the fluid flow path but also alleviating the sand production. This study on hydraulic fracturing for HBS offers novel insights into enhancing the gas production efficiency and revealing potential engineering risks in practical applications.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] The effects of compressibility of natural gas hydrate-bearing sediments on gas production using depressurization
    Sun, Xiang
    Li, Yanghui
    Liu, Yu
    Song, Yongchen
    ENERGY, 2019, 185 : 837 - 846
  • [2] Multi-well strategy for gas production by depressurization from methane hydrate-bearing sediments
    Terzariol, M.
    Santamarina, J. C.
    ENERGY, 2021, 220 (220)
  • [3] Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator
    Li, Nan
    Zhang, Jie
    Xia, Ming-Ji
    Sun, Chang-Yu
    Liu, Yan-Sheng
    Chen, Guang-Jin
    ENERGY, 2021, 234
  • [4] Experimental Analysis on Depressurization-induced Gas Production from 10-Meter-scale Hydrate-bearing Sediments
    Ahn, Taewoong
    Lee, Jaehyoung
    Lee, Joo-Yong
    Kim, Se-Joon
    Park, Changhyup
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2021, 31 (03) : 372 - 377
  • [5] Experimental Study on the Depressurization of Methane Hydrate in the Clayey Silt Sediments via Hydraulic Fracturing
    Wang, Xiaochu
    Sun, Youhong
    Chen, Hangkai
    Peng, Saiyu
    Jiang, Shuhui
    Ma, Xiaolong
    ENERGY & FUELS, 2023, 37 (06) : 4377 - 4390
  • [6] Numerical modeling for the mechanical behavior of marine gas hydrate-bearing sediments during hydrate production by depressurization
    Sun, Xiang
    Wang, Lei
    Luo, Hao
    Song, Yongchen
    Li, Yanghui
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2019, 177 : 971 - 982
  • [7] NUMERICAL INVESTIGATION ON GAS HYDRATE PRODUCTION BY DEPRESSURIZATION IN HYDRATE-BEARING RESERVOIR
    Long, Xiaoyan
    Tjok, Komin
    Adhikari, Sudarshan
    PROCEEDINGS OF THE ASME 35TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING , 2016, VOL 8, 2016,
  • [8] Effect of Clay Content on the Mechanical Properties of Hydrate-Bearing Sediments during Hydrate Production via Depressurization
    Li, Dongliang
    Wang, Zhe
    Liang, Deqing
    Wu, Xiaoping
    ENERGIES, 2019, 12 (14)
  • [9] Analytical Investigation of Gas and Water Production from Aqueous-Rich Hydrate-Bearing Sediments by Depressurization
    Guo, Xianwei
    Feng, Yu
    Lv, Xin
    Li, Qingping
    Fan, Qi
    Dong, Hongsheng
    Zhao, Jiafei
    Yang, Lei
    ENERGY & FUELS, 2021, 35 (02) : 1414 - 1421
  • [10] Effects of Formation Dip on Gas Production from Unconfined Marine Hydrate-Bearing Sediments through Depressurization
    Yuan, Yilong
    Xu, Tianfu
    Xia, Yingli
    Xin, Xin
    GEOFLUIDS, 2018,