Simultaneous Identification of the Parameters in the Mathematical Model of Brain Tumor Growth Dynamics Under Treatment

被引:0
|
作者
Tatar, Salih [1 ]
BenSalah, Mohamed [2 ]
Alamil, Maryam [1 ]
机构
[1] Alfaisal Univ, Coll Sci & Gen Studies, Riyadh 11533, Saudi Arabia
[2] Univ Sousse, Higher Inst Appl Sci & Technol Sousse, Dept Comp Sci, Rue Tahar Ben Achour, Sousse 4003, Tunisia
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2024年 / 17卷 / 04期
关键词
Brain Tumor; Inverse Problem; Optimization Problem; Frechet differentiability; SIMULTANEOUS RECONSTRUCTION; REACTION COEFFICIENT; INITIAL TEMPERATURE; GLIOMA GROWTH; RADIOTHERAPY; SIMULATION;
D O I
10.29020/nybg.ejpam.v17i4.5386
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to an inverse problem for a nonlinear parabolic equation related to brain tumor dynamics. After reformulating the inverse problem as a minimization problem, we prove the existence and stability of the solution to the minimization problem. Based on the Fre<acute accent>chet differentiability of the objective (cost) functional, we develop an efficient iterative procedure for the numerical solution to the minimization problem. Numerical examples with noise-free and noisy data illustrate applicability and accuracy of the proposed method to some extent.
引用
收藏
页码:2651 / 2675
页数:25
相关论文
共 50 条
  • [1] DYNAMICS OF TUMOR GROWTH - A MATHEMATICAL MODEL
    SUMMERS, WC
    GROWTH, 1966, 30 (03) : 333 - &
  • [2] Mathematical Model of Brain Tumor With Radiotherapy Treatment
    Sujitha, S.
    Jayakumar, T.
    Maheskumar, D.
    Kaviyan, E. Vargees
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (02): : 1039 - 1050
  • [3] Identification of Crucial Parameters in a Mathematical Multiscale Model of Glioblastoma Growth
    Schuetz, Tina A.
    Mang, Andreas
    Becker, Stefan
    Toma, Alina
    Buzug, Thorsten M.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2014, 2014
  • [4] A mathematical model for tumor growth and treatment using virotherapy
    Abernathy, Zachary
    Abernathy, Kristen
    Stevens, Jessica
    AIMS MATHEMATICS, 2020, 5 (05): : 4136 - 4150
  • [5] Organization of the Dynamics in a Parameter Plane of a Tumor Growth Mathematical Model
    Stegemann, Cristiane
    Rech, Paulo C.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (02):
  • [6] A mathematical model of brain tumor
    Ashi, H. A.
    Alahmadi, Dua M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (09) : 10137 - 10150
  • [7] Parameters identification in view of dynamics measuring devices and mathematical model errors
    Leonov, V.A.
    Markin, D.N.
    Markin, N.N.
    Pribory i Sistemy Upravleniya, 2001, (08): : 15 - 18
  • [8] A mathematical model of respiratory and biothermal dynamics in brain hypothermia treatment
    Gaohua, Lu
    Kimura, Hidenori
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (04) : 1266 - 1278
  • [9] A mathematical model of intracranial pressure dynamics for brain hypothermia treatment
    Gaohua, L
    Kimura, H
    JOURNAL OF THEORETICAL BIOLOGY, 2006, 238 (04) : 882 - 900
  • [10] Mathematical treatment of tumor growth
    Arahovitis, I
    ADVANCES IN SCATTERING AND BIOMEDICAL ENGINEERING, PROCEEDINGS, 2004, : 474 - 483