Radiomics and Deep Learning Prediction of Immunotherapy-Induced Pneumonitis From Computed Tomography

被引:0
|
作者
Smith, David S. [1 ,2 ]
Lippenszky, Levente [3 ]
LeNoue-Newton, Michele L. [4 ,5 ]
Jain, Neha M. [4 ]
Mittendorf, Kathleen F. [4 ]
Micheel, Christine M. [4 ]
Cella, Patrick A. [6 ]
Wolber, Jan [6 ]
Osterman, Travis J. [4 ,5 ]
机构
[1] Vanderbilt Univ, Med Ctr, Inst Imaging Sci, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Med Ctr, Dept Radiol & Radiol Sci, Nashville, TN 37235 USA
[3] GE HealthCare, Sci & Technol Org, Artificial Intelligence & Machine Learning, Budapest, Hungary
[4] Vanderbilt Univ, Med Ctr, Vanderbilt Ingram Canc Ctr, Nashville, TN USA
[5] Vanderbilt Univ, Med Ctr, Dept Biomed Informat, Nashville, TN USA
[6] GE HealthCare, Pharmaceut Diagnost, Chalfont St Giles, England
来源
JCO CLINICAL CANCER INFORMATICS | 2025年 / 9卷
关键词
D O I
10.1200/CCI-24-00198
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PURPOSEPrimary barriers to application of immune checkpoint inhibitor (ICI) therapy for cancer include severe side effects (such as potentially life threatening pneumonitis [PN]), which can cause the discontinuation of treatment. Predicting which patients may develop PN while on ICI would improve both safety and potential efficacy because treatments could be safely administered for longer or discontinued before severe toxicity.METHODSStarting from a cohort of 3,351 patients with cancer who received previous ICI therapy at the Vanderbilt University Medical Center, we curated 2,700 contrast chest computed tomography (CT) volumes for 671 patients. Three different pure imaging models predicted the potential for PN using only a single time point before the first ICI dose.RESULTSThe first model used 109 radiomics features only and achieved an AUC of 0.747 (CI, 0.705 to 0.789) with a positive predictive value (PPV) of 0.244 (CI, 0.211 to 0.276) at a sensitivity of 0.553 (CI, 0.485 to 0.621) using mainly features describing the global lung properties. The second model used a convolutional neural network (CNN) on the raw CTs to improve to an AUC of 0.819 (CI, 0.781 to 0.857) with a PPV of 0.244 (CI, 0.203 to 0.284) at a sensitivity of 0.743 (CI, 0.681 to 0.806). The third model combined both radiomics and deep learning but, with an AUC of 0.829 (CI, 0.797 to 0.862) and a PPV of 0.254 (CI, 0.228 to 0.281) at a sensitivity of 0.780 (CI, 0.721 to 0.840), did not show a significant improvement on the CNN-only model.CONCLUSIONThis new model suggests the utility of deep learning in PN prediction over traditional pure radiomics and promises better management for patients receiving ICI and the ability to better stratify patients in immunotherapy drug trials.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Radiomics to predict immunotherapy-induced pneumonitis: proof of concept
    Rivka R. Colen
    Takeo Fujii
    Mehmet Asim Bilen
    Aikaterini Kotrotsou
    Srishti Abrol
    Kenneth R. Hess
    Joud Hajjar
    Maria E. Suarez-Almazor
    Anas Alshawa
    David S. Hong
    Dunia Giniebra-Camejo
    Bettzy Stephen
    Vivek Subbiah
    Ajay Sheshadri
    Tito Mendoza
    Siqing Fu
    Padmanee Sharma
    Funda Meric-Bernstam
    Aung Naing
    Investigational New Drugs, 2018, 36 : 601 - 607
  • [2] Radiomics to predict immunotherapy-induced pneumonitis: proof of concept
    Colen, Rivka R.
    Fujii, Takeo
    Bilen, Mehmet Asim
    Kotrotsou, Aikaterini
    Abrol, Srishti
    Hess, Kenneth R.
    Hajjar, Joud
    Suarez-Almazor, Maria E.
    Alshawa, Anas
    Hong, David S.
    Giniebra-Camejo, Dunia
    Stephen, Bettzy
    Subbiah, Vivek
    Sheshadri, Ajay
    Mendoza, Tito
    Fu, Siqing
    Sharma, Padmanee
    Meric-Bernstam, Funda
    Naing, Aung
    INVESTIGATIONAL NEW DRUGS, 2018, 36 (04) : 601 - 607
  • [3] Immunotherapy-induced pneumonitis: cases report
    Helber, Henrique Alkalay
    Hada, Aline Lury
    Pio, Raquel Baptista
    Zavarize de Moraes, Pedro Henrique
    Diniz Gomes, Diogo Bugano
    EINSTEIN-SAO PAULO, 2018, 16 (02): : eRC4030
  • [4] IMMUNOTHERAPY-INDUCED PNEUMONITIS REFRACTORY TO CORTICOSTEROID TREATMENT
    Nagasunder, Arabhi
    Sidana, Megan
    Tiger, Josh
    CHEST, 2020, 158 (04) : 910A - 910A
  • [5] Handcrafted Radiomics, Deep Learning Radiomics in the Prediction of Radiation Pneumonitis for NSCLC Patients Treated with Immunotherapy Followed with Thoracic Radiotherapy
    Yuan, Z.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E79 - E79
  • [6] Clinical outcomes and role of bronchoscopy in immunotherapy-induced pneumonitis
    Fong, G.
    Bennett, O.
    Lewis, S.
    Putt, M.
    Cook, A.
    RESPIROLOGY, 2022, 27 : 160 - 160
  • [7] Deep Learning of Computed Tomography Virtual Wedge Resection for Prediction of Histologic Usual Interstitial Pneumonitis
    Shaish, Hiram
    Ahmed, Firas S.
    Lederer, David
    D'Souza, Belinda
    Armenta, Paul
    Salvatore, Mary
    Saqi, Anjali
    Huang, Sophia
    Jambawalikar, Sachin
    Mutasa, Simukayi
    ANNALS OF THE AMERICAN THORACIC SOCIETY, 2021, 18 (01) : 51 - 59
  • [8] Timing of immunotherapy-induced pneumonitis in patients with primary lung malignancy
    Winter, Megan
    Gilani, Madiha Atif
    Anipindi, Manasa
    Venigalla, Tejaswi
    Doreswamy, Shriya
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [9] AUTOMATED 5-YEAR MORTALITY PREDICTION USING DEEP LEARNING AND RADIOMICS FEATURES FROM CHEST COMPUTED TOMOGRAPHY
    Carneiro, Gustavo
    Oakden-Rayner, Luke
    Bradley, Andrew P.
    Nascimento, Jacinto
    Palmer, Lyle
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 130 - 134
  • [10] Checkpoint inhibitor immunotherapy-induced radiation recall pneumonitis: A case series
    Parsonson, Andrew O.
    Park, John J.
    Karikios, Deme
    Tognela, Annette
    Gurney, Howard
    Wang, Tim
    Sabanathan, Dhanusha
    ASIA-PACIFIC JOURNAL OF CLINICAL ONCOLOGY, 2022, 18 : 136 - 136