FedShufde: A privacy preserving framework of federated learning for edge-based smart UAV delivery system

被引:1
|
作者
Yao, Aiting [1 ]
Pal, Shantanu [2 ]
Li, Gang [2 ]
Li, Xuejun [1 ]
Zhang, Zheng [1 ]
Jiang, Frank [2 ]
Dong, Chengzu [3 ]
Xu, Jia [1 ]
Liu, Xiao [2 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Hefei, Peoples R China
[2] Deakin Univ, Sch Informat Technol, Melbourne, Vic, Australia
[3] Lingnan Univ, Sch Data Sci, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Internet of Things; Edge computing; UAV; Smart delivery system; Differential privacy; Federated learning; Shuffle model;
D O I
10.1016/j.future.2025.107706
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In recent years, there has been a rapid increase in the integration of Internet of Things (IoT) systems into edge computing. This integration offers several advantages over traditional cloud computing, including lower latency and reduced network traffic. In addition, edge computing facilitates the protection of users' sensitive data by processing it at the edge before transmitting it to the cloud using techniques such as Federated Learning (FL) and Differential Privacy (DP). However, these techniques have limitations, such as the risk of user information being obtained by attackers through the uploaded weights/model parameters in FL and the randomness of DP, which limits data availability. To address these issues, this paper proposes a framework called FedShufde (Federated Learning with a Shuf fle Model and D ifferential Privacy in E dge Computing Environments) to protect user privacy in edge computing-based IoT systems, using an Unmanned Aerial Vehicle (UAV) delivery system as an example. FedShufde uses local differential privacy and the shuffle model to prevent attackers from inferring user privacy from information such as UAV's location, flight conditions, or delivery address. In addition, the network connection between the UAV and the edge server cannot be obtained by the cloud aggregator, and the shuffle model reduces the communication cost between the edge server and the cloud aggregator. Our experiments on a real-world edge-based smart UAV delivery system using public datasets demonstrate the significant advantages of our proposed framework over baseline strategies.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A privacy preserving framework for federated learning in smart healthcare systems
    Wang, Wenshuo
    Li, Xu
    Qiu, Xiuqin
    Zhang, Xiang
    Brusic, Vladimir
    Zhao, Jindong
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (01)
  • [2] A Federated Learning Based Privacy-Preserving Smart Healthcare System
    Li, Jiachun
    Meng, Yan
    Ma, Lichuan
    Du, Suguo
    Zhu, Haojin
    Pei, Qingqi
    Shen, Xuemin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (03) : 2021 - 2031
  • [3] The Blockchain-Based Edge Computing Framework for Privacy-Preserving Federated Learning
    Hu, Shili
    Li, Jiangfeng
    Zhang, Chenxi
    Zhao, Qinpei
    Ye, Wei
    2021 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN (BLOCKCHAIN 2021), 2021, : 566 - 571
  • [4] PPSFL: Privacy-Preserving Split Federated Learning for heterogeneous data in edge-based Internet of Things
    Zheng, Jiali
    Chen, Yixin
    Lai, Qijia
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 156 : 231 - 241
  • [5] Enhancing Edge-Based Federated Learning With Privacy-Preserving Gradient Transmission for Tool Wear Detection
    Hung, Chung-Wen
    Tsai, Cheng-Yu
    Lee, Ching-Hung
    IEEE SENSORS JOURNAL, 2024, 24 (12) : 19780 - 19790
  • [6] PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Dai, Hua
    Liu, Guoxiu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2022, 17 : 1905 - 1918
  • [7] Privacy-Preserving and Verifiable Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Huang, Yuxian
    Dai, Hua
    Xiang, Yang
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 565 - 580
  • [8] Federated deep learning for smart city edge-based applications
    Djenouri, Youcef
    Michalak, Tomasz P.
    Lin, Jerry Chun-Wei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 147 : 350 - 359
  • [9] BDFL: A Blockchain-Enabled FL Framework for Edge-based Smart UAV Delivery Systems
    Dong, Chengzu
    Xu, Zhiyu
    Jiang, Frank
    Pal, Shantanu
    Zhang, Chong
    Chen, Shiping
    Liu, Xiao
    THIRD INTERNATIONAL WORKSHOP ON ADVANCED SECURITY ON SOFTWARE AND SYSTEMS, ASSS 2023, 2023,
  • [10] Acies: A Privacy-Preserving System for Edge-based Classification
    Xue, Wanli
    Shen, Yiran
    Luo, Chengwen
    Hu, Wen
    Seneviratne, Aruna
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (IEEE TRUSTCOM) / 12TH IEEE INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (IEEE BIGDATASE), 2018, : 914 - 919