SynthBrainGrow: Synthetic Diffusion Brain Aging for Longitudinal MRI Data Generation in Young People

被引:0
|
作者
Zapaishchykova, Anna [1 ,2 ,3 ,4 ,5 ]
Kann, Benjamin H. [1 ,2 ,3 ,4 ,5 ]
Tak, Divyanshu [1 ,2 ,3 ,4 ,5 ]
Ye, Zezhong [1 ,2 ,3 ,4 ,5 ]
Haas-Kogan, Daphne A. [1 ,2 ,3 ,6 ]
Aerts, Hugo J. W. L. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Harvard Med Sch, Mass Gen Brigham, Artificial Intelligence Med AIM Program, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Radiat Oncol, Dana Farber Canc Inst, Boston, MA 02115 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA 02115 USA
[4] Maastricht Univ, Radiol & Nucl Med, CARIM, Maastricht, Netherlands
[5] Maastricht Univ, GROW, Maastricht, Netherlands
[6] Boston Childrens Hosp, Boston, MA USA
来源
基金
美国国家卫生研究院;
关键词
Generative Models; Diffusion Probabilistic Models; Neural aging; AGE;
D O I
10.1007/978-3-031-72744-3_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Synthetic longitudinal brain MRI simulates brain aging and would enable more efficient research on neurodevelopmental and neurodegenerative conditions. Synthetically generated, age-adjusted brain images could serve as valuable alternatives to costly longitudinal imaging acquisitions, serve as internal controls for studies looking at the effects of environmental or therapeutic modifiers on brain development, and allow data augmentation for diverse populations. In this paper, we present a diffusion-based approach called SynthBrainGrow for synthetic brain aging with a two-year step. To validate the feasibility of using synthetically generated data on downstream tasks, we compared structural volumetrics of two-year-aged brains against synthetically aged brain MRI. The use of structural similarity indices, such as the Structural Similarity Index Measure (SSIM), for evaluating synthetic medical images has come under recent scrutiny. These indices may not effectively capture the perceptual quality or clinical usefulness in synthesized radiology scans. To assess the performance of SynthBrainGrow, we evaluated the substructural volumetric similarity between synthetic and real patient scans. Results show that SynthBrainGrow can accurately capture substructure volumetrics and simulate structural changes such as ventricle enlargement and cortical thinning. Generating longitudinal brain datasets from cross-sectional data could enable augmented training and benchmarking of computational tools for analyzing lifespan trajectories. This work signifies an important advance in generative modeling to synthesize realistic longitudinal data with limited lifelong MRI scans. The code is available at https://github.com/zapaishchykova/SynthBrainGrow.
引用
收藏
页码:75 / 86
页数:12
相关论文
共 50 条
  • [1] Synthetic data generation by diffusion models
    Zhu, Jun
    NATIONAL SCIENCE REVIEW, 2024, 11 (08)
  • [2] Synthetic data generation by diffusion models
    Jun Zhu
    National Science Review, 2024, 11 (08) : 19 - 21
  • [3] Scaling Synthetic Brain Data Generation
    Doan, Mike
    Plis, Sergey
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (02) : 840 - 847
  • [4] SYNTHETIC MRI GENERATION TO FACILITATE AUTOSEGMENTATION OF PEDIATRIC BRAIN TUMORS IN LIMITED DATA SCENARIOS
    Chrysochoou, Dimosthenis
    Gandhi, Deep
    Familiar, Ariana
    Vossough, Arastoo
    Storm, Phillip
    Resnick, Adam
    Davatzikos, Christos
    Nabavizadeh, Ali
    Kazerooni, Anahita Fathi
    NEURO-ONCOLOGY, 2024, 26
  • [5] Topological visualization of brain diffusion MRI data
    Schultz, Thomas
    Theisel, Holger
    Seidel, Hans-Peter
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2007, 13 (06) : 1496 - 1503
  • [6] TuMore: Generation of Synthetic Brain Tumor MRI Data for Deep Learning Based Segmentation Approaches
    Lindner, Lydia
    Pfarrkirchner, Birgit
    Gsaxner, Christina
    Schmalstieg, Dieter
    Egger, Jan
    MEDICAL IMAGING 2018: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2018, 10579
  • [7] Leveraging longitudinal diffusion MRI data to quantify differences in white matter microstructural decline in normal and abnormal aging
    Archer, Derek B.
    Schilling, Kurt
    Shashikumar, Niranjana
    Jasodanand, Varuna
    Moore, Elizabeth E.
    Pechman, Kimberly R.
    Bilgel, Murat
    Beason-Held, Lori L.
    An, Yang
    Shafer, Andrea
    Ferrucci, Luigi
    Risacher, Shannon L.
    Gifford, Katherine A.
    Landman, Bennett A.
    Jefferson, Angela L.
    Saykin, Andrew J.
    Resnick, Susan M.
    Hohman, Timothy J.
    ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING, 2023, 15 (04)
  • [8] Longitudinal brain MRI changes in young people at ultra-high risk for the development of psychosis and in first episode schizophrenia
    Pantelis, Christos
    Sun, Daqiang
    Phillips, Lisa
    Velakoulis, Dennis
    Yung, Alison
    Wood, Stephen J.
    Thompson, Paul
    Van Erp, Theo
    Toga, Arthur W.
    Cannon, Tyrone
    Patrick, McGorry D.
    BIOLOGICAL PSYCHIATRY, 2007, 61 (08) : 19S - 19S
  • [9] Longitudinal study of epigenetic aging and its relationship with brain aging and cognitive skills in young adulthood
    Mareckova, Klara
    Pacinkova, Anna
    Marecek, Radek
    Sebejova, Ludmila
    Holla, Lydie Izakovicova
    Klanova, Jana
    Brazdil, Milan
    Nikolova, Yuliya S.
    FRONTIERS IN AGING NEUROSCIENCE, 2023, 15
  • [10] Brain aging and cardiovascular factors in HIV: a longitudinal volume and shape MRI study
    Jakabek, David
    Rae, Caroline D.
    Brew, Bruce J.
    Cysique, Lucette A.
    AIDS, 2022, 36 (06) : 785 - 794