Deep Learning for Automated Ischemic Stroke Lesion Segmentation from Multi-spectral MRI

被引:0
|
作者
Dogru, Dilan [1 ]
Ozdemir, Mehmet Akif [1 ]
Guren, Onan [1 ]
机构
[1] Izmir Katip Celebi Univ, Dept Biomed Engn, Izmir, Turkiye
关键词
Ischemic Stroke; Segmentation; MRI; Deep Learning; U-net; CNN;
D O I
10.23919/EUSIPCO63174.2024.10715216
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Stroke is one of the most prevalent diseases that cause long-term disability and mortality worldwide. Precisely detecting stroke lesions is crucial to diagnosing disease and planning potential treatments. Applications that assist specialists in automated lesion detection can play an important role in preventing time-consuming tasks. For quantitatively detecting strokes, specialists frequently use magnetic resonance imaging (MRI). In light of these considerations, we present a five-layer modified recurrent U-net model designed for the automated segmentation of ischemic stroke lesions in multi-spectral MRIs. The methodology implemented includes individually trained case MRI slices using the leave-one-out cross-validation (LOOCV) approach. The effectiveness of the developed model was evaluated by subject-wise metrics in comparison with the ground truth, yielding a very competitive average dice score (DSC) of 0.748.
引用
收藏
页码:1392 / 1396
页数:5
相关论文
共 50 条
  • [1] Ischemic Stroke Lesion Segmentation in Multi-spectral MR Images with Support Vector Machine Classifiers
    Maier, Oskar
    Wilms, Matthias
    von der Gablentz, Janina
    Kraemer, Ulrike
    Handels, Heinz
    MEDICAL IMAGING 2014: COMPUTER-AIDED DIAGNOSIS, 2014, 9035
  • [2] An automated multi-spectral MRI segmentation algorithm using approximate reducts
    Widz, S
    Revett, K
    Slezak, D
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, 2004, 3066 : 815 - 824
  • [3] Automated Final Lesion Segmentation in Posterior Circulation Acute Ischemic Stroke Using Deep Learning
    Zoetmulder, Riaan
    Konduri, Praneeta R.
    Obdeijn, Iris, V
    Gavves, Efstratios
    Isgum, Ivana
    Majoie, Charles B. L. M.
    Dippel, Diederik W. J.
    Roos, Yvo B. W. E. M.
    Goyal, Mayank
    Mitchell, Peter J.
    Campbell, Bruce C., V
    Lopes, Demetrius K.
    Reimann, Gernot
    Jovin, Tudor G.
    Saver, Jeffrey L.
    Muir, Keith W.
    White, Phil
    Bracard, Serge
    Chen, Bailiang
    Brown, Scott
    Schonewille, Wouter J.
    van der Hoeven, Erik
    Puetz, Volker
    Marquering, Henk A.
    DIAGNOSTICS, 2021, 11 (09)
  • [4] Application of Deep Learning Method on Ischemic Stroke Lesion Segmentation
    Zhang Y.
    Liu S.
    Li C.
    Wang J.
    Journal of Shanghai Jiaotong University (Science), 2022, 27 (01): : 99 - 111
  • [5] Towards Clinical Diagnosis: Automated Stroke Lesion Segmentation on Multi-Spectral MR Image Using Convolutional Neural Network
    Liu, Zhiyang
    Cao, Chen
    Ding, Shuxue
    Liu, Zhiang
    Han, Tong
    Liu, Sheng
    IEEE ACCESS, 2018, 6 : 57006 - 57016
  • [6] Automated ischemic stroke lesion MRI quantification
    Doyle, S.
    Forbes, F.
    Jaillard, A.
    Heck, O.
    Detante, O.
    Dojat, M.
    CEREBROVASCULAR DISEASES, 2018, 45 : 409 - 410
  • [7] Predicting ischemic stroke risk from atrial fibrillation based on multi-spectral fundus images using deep learning
    Li, Hui
    Gao, Mengdi
    Song, Haiqing
    Wu, Xiao
    Li, Gang
    Cui, Yiwei
    Li, Yang
    Xie, Zhaoheng
    Ren, Qiushi
    Zhang, Haitao
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [8] Brain Tumor Segmentation from Multi-Spectral MRI Data Using Cascaded Ensemble Learning
    Fulop, Timea
    Gyorfi, Agnes
    Csaholczi, Szabolcs
    Kovacs, Levente
    Szilagyi, Laszlo
    2020 IEEE 15TH INTERNATIONAL CONFERENCE OF SYSTEM OF SYSTEMS ENGINEERING (SOSE 2020), 2020, : 531 - 536
  • [9] A Review of MRI Acute Ischemic Stroke Lesion Segmentation
    Isa, Abang Mohd Arif Anaqi Abang
    Kipli, Kuryati
    Mahmood, Muhammad Hamdi
    Jobli, Ahmad Tirmizi Bin
    Sahari, Siti Kudnie
    Muhammad, Mohd Saufee
    Chong, Soon K.
    AL-Kharabsheh, Buthainah Nawaf Issa
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2020, 12 (06): : 116 - 127
  • [10] Deep learning models for ischemic stroke lesion segmentation in medical images: A survey
    Luo J.
    Dai P.
    He Z.
    Huang Z.
    Liao S.
    Liu K.
    Computers in Biology and Medicine, 2024, 175