Towards Evaluation of Explainable Artificial Intelligence in Streaming Data

被引:0
|
作者
Mozolewski, Maciej [1 ]
Bobek, Szymon [1 ]
Ribeiro, Rita P. [2 ]
Nalepa, Grzegorz J. [1 ]
Gama, Joao [2 ]
机构
[1] Jagiellonian Univ, Jagiellonian Human Ctr AI Lab, Inst Appl Comp Sci, Mark Kac Ctr Complex Syst Res, Prof Stanislawa Lojasiewicza 11 St, PL-30348 Krakow, Poland
[2] Univ Porto, Fac Sci, INESC TEC, Dr Roberto Frias St, P-4200465 Porto, Portugal
关键词
Explainable Artificial Intelligence; Fidelity; Consistency; Lipschitz Stability; Distribution Shift; Data Streams;
D O I
10.1007/978-3-031-63803-9_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces a method to assess the quality of Explainable Artificial Intelligence (XAI) algorithms in dynamic data streams, concentrating on the fidelity and stability of feature-importance and rule-based explanations. We employ XAI metrics, such as fidelity and Lipschitz Stability, to compare explainers between each other and introduce the Comparative Expert Stability Index (CESI) for benchmarking explainers against domain knowledge. We adopted the aforementioned metrics to the streaming data scenario and tested them in an unsupervised classification scenario with simulated distribution shifts as different classes. The necessity for adaptable explainers in complex scenarios, like failure detection is underscored, stressing the importance of continued research into versatile explanation techniques to enhance XAI system robustness and interpretability.
引用
收藏
页码:145 / 168
页数:24
相关论文
共 50 条
  • [1] Explainable artificial intelligence for spectroscopy data: a review
    Contreras, Jhonatan
    Bocklitz, Thomas
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2024, : 603 - 615
  • [2] Towards a Framework for Interdisciplinary Studies in Explainable Artificial Intelligence
    Ziethmann, Paula
    Stieler, Fabian
    Pfrommer, Raphael
    Schloegl-Flier, Kerstin
    Bauer, Bernhard
    ARTIFICIAL INTELLIGENCE IN HCI, PT I, AI-HCI 2024, 2024, 14734 : 316 - 333
  • [3] Explainable Artificial Intelligence for Tabular Data: A Survey
    Sahakyan, Maria
    Aung, Zeyar
    Rahwan, Talal
    IEEE ACCESS, 2021, 9 : 135392 - 135422
  • [4] Explainable Artificial Intelligence for Interpretable Data Minimization
    Becker, Maximilian
    Toprak, Emrah
    Beyerer, Juergen
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 885 - 893
  • [5] Towards explainable artificial intelligence for the leukemia subtype recognition
    Ochoa-Montiel, Rocio
    Olague, Gustavo
    Sossa, Humberto
    2021 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2021,
  • [6] Fund performance evaluation with explainable artificial intelligence
    Kovvuri, Veera Raghava Reddy
    Fu, Hsuan
    Fan, Xiuyi
    Seisenberger, Monika
    FINANCE RESEARCH LETTERS, 2023, 58
  • [7] Evaluation Metrics in Explainable Artificial Intelligence (XAI)
    Coroama, Loredana
    Groza, Adrian
    ADVANCED RESEARCH IN TECHNOLOGIES, INFORMATION, INNOVATION AND SUSTAINABILITY, ARTIIS 2022, PT I, 2022, 1675 : 401 - 413
  • [8] Explainable artificial intelligence
    Wickramasinghe, Chathurika S.
    Marino, Daniel
    Amarasinghe, Kasun
    FRONTIERS IN COMPUTER SCIENCE, 2023, 5
  • [9] Special issue on "Towards robust explainable and interpretable artificial intelligence"
    Tomasiello, Stefania
    Feng, Feng
    Zhao, Yichuan
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (1) : 417 - 418
  • [10] Towards Interactive and Social Explainable Artificial Intelligence for Digital History
    Albrecht, Richard
    Hulstijn, Joris
    Tchappi, Igor
    Najjar, Amro
    EXPLAINABLE AND TRANSPARENT AI AND MULTI-AGENT SYSTEMS, EXTRAAMAS 2024, 2024, 14847 : 189 - 202