Classification of Heart Failure Using Machine Learning: A Comparative Study

被引:0
|
作者
Chulde-Fernandez, Bryan [1 ]
Enriquez-Ortega, Denisse [1 ]
Guevara, Cesar [2 ]
Navas, Paulo [1 ]
Tirado-Espin, Andres [3 ]
Vizcaino-Imacana, Paulina [4 ]
Villalba-Meneses, Fernando [1 ]
Cadena-Morejon, Carolina [3 ]
Almeida-Galarraga, Diego [1 ]
Acosta-Vargas, Patricia [5 ]
机构
[1] Yachay Tech Univ, Sch Biol Sci & Engn, Hacienda San Jose S-N, San Miguel De Urcuqui 100119, Ecuador
[2] Cunef Univ, Quantitat Methods Dept, Madrid 28040, Spain
[3] Univ Yachay Tech, Sch Math & Computat Sci, San Miguel De Urcuqui 100119, Ecuador
[4] UIDE Int Univ Ecuador, Fac Tech Sci, Sch Comp Sci, Quito 170501, Ecuador
[5] Univ Las Amer, Intelligent & Interact Syst Lab, Quito 170125, Ecuador
来源
LIFE-BASEL | 2025年 / 15卷 / 03期
关键词
heart failure; machine learning; classification; feature extraction; diagnosis; CHALLENGES; MANAGEMENT; DISEASE;
D O I
10.3390/life15030496
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Several machine learning classification algorithms were evaluated using a dataset focused on heart failure. Results obtained from logistic regression, random forest, decision tree, K-nearest neighbors, and multilayer perceptron (MLP) were compared to obtain the best model. The random forest method obtained specificity = 0.93, AUC = 0.97, and Matthews correlation coefficient (MCC) = 0.83. The accuracy was high; therefore, it was considered the best model. On the other hand, K-nearest neighbors and MLP (multi-layer perceptron) showed lower accuracy rates. These results confirm the effectiveness of the random forest method in identifying heart failure cases. This study underlines that the number of features, feature selection and quality, model type, and hyperparameter fit are also critical in these studies, as well as the importance of using machine learning techniques.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] A comparative study on prediction of survival event of heart failure patients using machine learning algorithms
    Karakus, Mucella Ozbay
    Er, Orhan
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (16): : 13895 - 13908
  • [2] A comparative study on prediction of survival event of heart failure patients using machine learning algorithms
    Mücella Özbay Karakuş
    Orhan Er
    Neural Computing and Applications, 2022, 34 : 13895 - 13908
  • [3] Classification of Diseases Using Machine Learning Algorithms: A Comparative Study
    Moreno-Ibarra, Marco-Antonio
    Villuendas-Rey, Yenny
    Lytras, Miltiadis D.
    Yanez-Marquez, Cornelio
    Salgado-Ramirez, Julio-Cesar
    MATHEMATICS, 2021, 9 (15)
  • [4] Optimal Classification of Atrial Fibrillation and Congestive Heart Failure Using Machine Learning
    Fuadah, Yunendah Nur
    Lim, Ki Moo
    FRONTIERS IN PHYSIOLOGY, 2022, 12
  • [5] Exploring Guidelines for Classification of Major Heart Failure Subtypes by Using Machine Learning
    Alonso-Betanzos, Amparo
    Bolon-Canedo, Veronica
    Heyndrickx, Guy R.
    Kerkhof, Peter L. M.
    CLINICAL MEDICINE INSIGHTS-CARDIOLOGY, 2015, 9 : 57 - 71
  • [6] Predicting the Classification of Heart Failure Patients Using Optimized Machine Learning Algorithms
    Ahmed, Marzia
    Sulaiman, Mohd Herwan
    Hassan, Md Maruf
    Bhuiyan, Touhid
    IEEE ACCESS, 2025, 13 : 30555 - 30569
  • [7] Heart failure with preserved ejection fraction phenogroup classification using machine learning
    Kyodo, Atsushi
    Kanaoka, Koshiro
    Keshi, Ayaka
    Nogi, Maki
    Nogi, Kazutaka
    Ishihara, Satomi
    Kamon, Daisuke
    Hashimoto, Yukihiro
    Nakada, Yasuki
    Ueda, Tomoya
    Seno, Ayako
    Nishida, Taku
    Onoue, Kenji
    Soeda, Tsuneari
    Kawakami, Rika
    Watanabe, Makoto
    Nagai, Toshiyuki
    Anzai, Toshihisa
    Saito, Yoshihiko
    ESC HEART FAILURE, 2023, 10 (03): : 2019 - 2030
  • [8] A Comparative Analysis of Machine Learning Models for the Classification of Heart Failure Patients in the Intensive Care Unit
    Gaudin, Mateo
    Kaur, Swapandeep
    Sharma, Preeti
    Kumar, Rajeev
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2024,
  • [9] Classification of Heart Sounds Using Machine Learning
    Mastracci, Nathaniel
    Derakhshan, Farnaz
    Sykes, Edward R.
    Khan, Dodo
    2023 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH, ICDH, 2023, : 205 - 207
  • [10] Classification of the Insureds Using Integrated Machine Learning Algorithms: A Comparative Study
    Hanafy, Mohamed
    Ming, Ruixing
    APPLIED ARTIFICIAL INTELLIGENCE, 2022, 36 (01)