A Christ-Kiselev theorem for maximal operators in quasi-Banach lattices

被引:0
|
作者
Mastylo, Mieczyslaw [1 ]
Sinnamon, Gord [2 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, Uniwersytetu Poznanskiego 4, PL-61614 Poznan, Poland
[2] Western Univ, Dept Math, London, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Maximal operators; Filtrations; Function spaces; Lorentz spaces; Wiener amalgam spaces; Fourier transform; HP SPACES; AMALGAMS; DOMAIN; LP;
D O I
10.1007/s13163-025-00517-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Christ-Kiselev maximal theorem is proved for linear operators between quasi-Banach function lattices satisfying certain lattice geometrical conditions. The result is further explored for weighted Lorentz spaces, classical Lorentz spaces, and Wiener amalgams of Lebesgue function and sequence spaces. Extensions are made to K & ouml;the dual operators and to operators on interpolation spaces of quasi-Banach function lattices. Several applications to maximal Fourier operators are presented.
引用
收藏
页数:29
相关论文
共 50 条