The Effectiveness of Graph Contrastive Learning on Mathematical Information Retrieval

被引:0
|
作者
Wang, Pei-Syuan [1 ]
Chen, Hung-Hsuan [1 ]
机构
[1] Natl Cent Univ, Taoyuan, Taiwan
关键词
Mathematical information retrieval; Graphical contrastive learning; Layout;
D O I
10.1007/978-3-031-71382-8_5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper details an empirical investigation into using Graph Contrastive Learning (GCL) to generate mathematical equation representations, a critical aspect of Mathematical Information Retrieval (MIR). Our findings reveal that this simple approach consistently exceeds the performance of the current leading formula retrieval model, TangentCFT. To support ongoing research and development in this field, we have made our source code accessible to the public at https://github. com/WangPeiSyuan/GCL-Formula- Retrieval/.
引用
收藏
页码:60 / 72
页数:13
相关论文
共 50 条
  • [1] Graph contrastive learning with multiple information fusion
    Wang, Xiaobao
    Yang, Jun
    Wang, Zhiqiang
    He, Dongxiao
    Zhao, Jitao
    Huang, Yuxiao
    Jin, Di
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 268
  • [2] Adversarial Graph Contrastive Learning with Information Regularization
    Feng, Shengyu
    Jing, Baoyu
    Zhu, Yada
    Tong, Hanghang
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 1362 - 1371
  • [3] Language Agnostic Multilingual Information Retrieval with Contrastive Learning
    Hu, Xiyang
    Chen, Xinchi
    Qi, Peng
    Kong, Deguang
    Liu, Kunlun
    Wang, William Yang
    Huang, Zhiheng
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023), 2023, : 9133 - 9146
  • [4] Formula Citation Graph Based Mathematical Information Retrieval
    Yuan, Ke
    Gao, Liangcai
    Jiang, Zhuoren
    Tang, Zhi
    DOCUMENT ANALYSIS AND RECOGNITION - ICDAR 2021, PT I, 2021, 12821 : 631 - 647
  • [5] InfoGCL: Information-Aware Graph Contrastive Learning
    Xu, Dongkuan
    Cheng, Wei
    Luo, Dongsheng
    Chen, Haifeng
    Zhang, Xiang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [6] Information-Controllable Graph Contrastive Learning for Recommendation
    Guo, Zirui
    Yu, Yanhua
    Wang, Yuling
    Lu, Kangkang
    Yang, Zixuan
    Pang, Liang
    Chua, Tat-Seng
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 528 - 537
  • [7] Contrastive Graph Structure Learning via Information Bottleneck for Recommendation
    Wei, Chunyu
    Liang, Jian
    Liu, Di
    Wang, Fei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [8] Graph contrastive learning with min-max mutual information
    Xu, Yuhua
    Wang, Junli
    Guang, Mingjian
    Yan, Chungang
    Jiang, Changjun
    INFORMATION SCIENCES, 2024, 665
  • [9] Towards generalizable Graph Contrastive Learning: An information theory perspective
    Yuan, Yige
    Xu, Bingbing
    Shen, Huawei
    Cao, Qi
    Cen, Keting
    Zheng, Wen
    Cheng, Xueqi
    NEURAL NETWORKS, 2024, 172
  • [10] Learning Better Representations for Neural Information Retrieval with Graph Information
    Li, Xiangsheng
    de Rijke, Maarten
    Liu, Yiqun
    Mao, Jiaxin
    Ma, Weizhi
    Zhang, Min
    Ma, Shaoping
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 795 - 804