Bayesian estimation of stochastic volatility jump diffusion model parameters using S&P 500 and VIX data

被引:0
|
作者
Fullenbaum, Scott [1 ]
Hebner, Jackson [2 ]
Hwang, Dong Min [3 ]
Liebner, Jeffrey [4 ]
Lu, Qin [4 ]
Wine, Ashton [5 ]
机构
[1] Tufts Univ, Dept Math, Medford, MA USA
[2] Univ Connecticut, Dept Math, Storrs, CT USA
[3] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA USA
[4] Lafayette Coll, Dept Math, Easton, PA 18042 USA
[5] Xavier Univ, Dept Math, Cincinnati, OH USA
基金
美国国家科学基金会;
关键词
Stochastic volatility jump diffusion; VIX; Markov Chain Monte Carlo; Bayesian estimation; DYNAMICS;
D O I
10.1080/00949655.2024.2406957
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Stochastic Volatility Jump Diffusion (SVJD) model is a common tool used for option pricing. Existing literature has employed many techniques in order to estimate the parameters of this model, including both Bayesian and frequentist approaches. In 2010, Duan and Yeh [Jump and volatility risk premiums implied by VIX. J Econ Dyn Control. 2010;34(11):2232-2244] used a frequentist approach with maximum likelihood estimation that included the VIX, the Chicago Board Options Exchange (CBOE) Volatility Index, which carries real time S&P 500 option price information in addition to the S&P 500 data. In this paper, we combine the previous Bayesian approach in Cape et al. [Estimating Heston's and Bates' models parameters using Markov Chain Monte Carlo simulation. J Stat Comput Simul. 2015;85(11):2295-2314] with the inclusion of VIX by Duan and Yeh. We provide the derivations of the conditional posterior distributions of the SVJD model's parameters and a guide to a Markov Chain Monte Carlo (MCMC) algorithm used to estimate the parameters. We apply the algorithm to the historical S&P 500 and VIX data and provide the subsequent parameter estimates. We offer these tools for others performing similar research with our R code available upon request.
引用
收藏
页码:3957 / 3977
页数:21
相关论文
共 50 条
  • [1] The jump component of S&P 500 volatility and the VIX index
    Becker, Ralf
    Clements, Adam E.
    McClelland, Andrew
    JOURNAL OF BANKING & FINANCE, 2009, 33 (06) : 1033 - 1038
  • [2] The jump-diffusion process for the VIX and the S&P 500 index
    Lin, Chi-Tai
    Lee, Yen-Hsien
    AFRICAN JOURNAL OF BUSINESS MANAGEMENT, 2010, 4 (09): : 1761 - 1768
  • [3] Joint calibration of S&P 500 and VIX options under local stochastic volatility models
    Zhou, Zhiqiang
    Xu, Wei
    Rubtsov, Alexey
    INTERNATIONAL JOURNAL OF FINANCE & ECONOMICS, 2024, 29 (01) : 273 - 310
  • [4] Estimating the leverage parameter of continuous-time stochastic volatility models using high frequency S&P 500 and VIX
    Ishida, Isao
    McAleer, Michael
    Oya, Kosuke
    MANAGERIAL FINANCE, 2011, 37 (11) : 1048 - 1067
  • [5] Inferring volatility dynamics and risk premia from the S&P 500 and VIX markets
    Bardgett, Chris
    Gourier, Elise
    Leippold, Markus
    JOURNAL OF FINANCIAL ECONOMICS, 2019, 131 (03) : 593 - 618
  • [6] Heston stochastic vol-of-vol model for joint calibration of VIX and S&P 500 options
    Fouque, J. -P.
    Saporito, Y. F.
    QUANTITATIVE FINANCE, 2018, 18 (06) : 1003 - 1016
  • [7] The Information Contents of VIX Index and Range-based Volatility on Volatility Forecasting Performance of S&P 500
    Hung, Jui-Cheng
    Ni, Ren-Xi
    Chang, Matthew C.
    ECONOMICS BULLETIN, 2009, 29 (04): : 2592 - 2604
  • [8] Pricing VIX derivatives using a stochastic volatility model with a flexible jump structure
    Ye, Wuyi
    Wu, Bin
    Chen, Pengzhan
    PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2023, 37 (01) : 245 - 274
  • [9] The Hybrid Forecast of S&P 500 Volatility ensembled from VIX, GARCH and LSTM models
    Roszyk, Natalia
    S´lepaczuk, Robert
    arXiv,
  • [10] KERNEL WEIGHTED VOLATILITY ESTIMATION FOR STOCHASTIC DIFFUSION MODEL WITH JUMP
    Ying, Guobing
    Yang, Shanchao
    ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 64 (02) : 203 - 235