Optimized pipeline for personalized neurobiological insights from single patient-derived Neurospheres

被引:0
|
作者
Nugue, Guillaume [1 ]
Martins, Michele [1 ]
Vitoria, Gabriela [2 ]
Guimaraes, Beatriz Luzia De Mello Lima [2 ]
Quinones-Vega, Mauricio [1 ,3 ,4 ]
Rehen, Stevens [2 ,5 ]
Guimaraes, Marilia Z. [2 ,6 ]
Junqueira, Magno [1 ]
机构
[1] Univ Fed Rio de Janeiro, Inst Chem, Dept Biochem, BR-21941909 Rio De Janeiro, Brazil
[2] D Or Inst Res & Educ IDOR, Rio De Janeiro, Brazil
[3] Univ Fed Rio de Janeiro, Inst Chem, Lab Prote LabProt, LADETEC, BR-21941598 Rio De Janeiro, Brazil
[4] Univ Fed Rio de Janeiro, Inst Biophys Carlos Chagas Filho, Precis Med Res Ctr, BR-21941902 Rio De Janeiro, Brazil
[5] Univ Fed Rio de Janeiro, Inst Biol, Dept Genet, Rio De Janeiro, Brazil
[6] Univ Fed Rio de Janeiro, Inst Biomed Sci, Rio De Janeiro, Brazil
关键词
Neurosphere; TMT; IPSc; Quantitative proteomics;
D O I
10.1016/j.jprot.2024.105368
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This pipeline presents a refined approach for deriving personalized neurobiological insights from iPSC-derived neurospheres. By employing Tandem Mass Tag (TMT) labeling, we optimized sample pooling and multiplexing for robust comparative analysis across experimental conditions, maximizing data yield per sample. Through single-patient-derived neurospheres-composed of neural progenitor cells, early neurons, and radial glia-this study explores proteomic profiling to mirror the cellular complexity of neurodevelopment more accurately than traditional 2D cultures. Given their enhanced relevance, these 3D neurospheres serve as a valuable model for elucidating neurogenesis, differentiation, and neuropathological mechanisms, contributing to the advancement of in vitro neural models and reducing dependency on animal models. Significance: This study evaluates ten protein extraction protocols using TMT 10-plex labeling to optimize proteomic analysis from single neurospheres. It compares cost, protein yield, and the ability to detect differentially expressed proteins, identifying methods like SPEED and S-Trap as efficient for high-throughput studies, while FASP excels in peptide yield. TMT labeling enhances protein identification, particularly for low-abundance proteins, and allows pre-fractionation to maximize analysis from limited samples. However, challenges such as limited PTM analysis and the potential loss of minor proteins highlight the importance of selecting protocols based on specific research goals. This work contributes to optimizing proteomic workflows for in vitro neural models, advancing single-cell analysis with minimal reliance on animal models.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Patient-derived xenograft mouse models of hepatoblastoma for a personalized medicine pipeline
    Woodfield, Sarah E.
    Patel, Roma H.
    Espinoza, Andres F.
    Whitlock, Richard S.
    Epps, Jessica
    Badachhape, Andrew
    Larson, Samuel R.
    Srivastava, Rohit K.
    Shah, Aayushi P.
    Govindu, Saiabhiroop R.
    Zorman, Barry
    Mistretta, Brandon J.
    Fisher, Kevin E.
    Gandhi, Ilavarasi
    Reuther, Jacquelyn
    Urbicain, Martin
    Ibarra, Aryana M.
    Rankothgedera, Sakuni
    Holloway, Kimberly R.
    Sarabia, Stephen F.
    Heczey, Andras
    Ghaghada, Ketan B.
    Patel, Kalyani R.
    Lopez-Terrada, Dolores
    Roy, Angshumoy
    Gunaratne, Preethi H.
    Sumazin, Pavel
    Vasudevan, Sanjeev A.
    CLINICAL CANCER RESEARCH, 2022, 28 (17)
  • [2] Advances of Patient-Derived Organoids in Personalized Radiotherapy
    Wang, Yuenan
    Li, Ye
    Sheng, Zonghai
    Deng, Weiwei
    Yuan, Hongyan
    Wang, Shubin
    Liu, Yajie
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [3] NSCLC patient-derived organoids to guide personalized therapy
    Kim, Seok-Young
    Kim, Dong Hwi
    Joo, Hyeong-Seok
    Yun, Mi Ran
    Lee, Ji Yeon
    Kim, Sang Min
    Kim, Hyunki
    Hong, Min Hee
    Kim, Hye Ryun
    Cho, Byoung Chul
    CANCER RESEARCH, 2019, 79 (13)
  • [4] Application of Patient-Derived Cancer Organoids to Personalized Medicine
    Shiihara, Masahiro
    Furukawa, Toru
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (05):
  • [5] Patient-derived three-dimensional cortical neurospheres to model Parkinson's disease
    Raja, Waseem K.
    Neves, Esther
    Burke, Christopher
    Jiang, Xin
    Xu, Ping
    Rhodes, Kenneth J.
    Khurana, Vikram
    Scannevin, Robert H.
    Chung, Chee Yeun
    PLOS ONE, 2022, 17 (12):
  • [6] Modeling bladder cancer in the laboratory: Insights from patient-derived organoids
    Guo, Zikai
    Li, Zhichao
    Wang, Jia
    Jiang, Hongxiao
    Wang, Xu
    Sun, Yangyang
    Huang, Weiren
    BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2024, 1879 (06):
  • [7] Patient-derived microvesicles/AIE luminogen hybrid system for personalized sonodynamic cancer therapy in patient-derived xenograft models
    Duo, Yanhong
    Zhu, Daoming
    Sun, Xiurong
    Suo, Meng
    Zheng, Zheng
    Jiang, Wei
    Tang, Ben Zhong
    Biomaterials, 2021, 272
  • [8] Patient-derived microvesicles/AIE luminogen hybrid system for personalized sonodynamic cancer therapy in patient-derived xenograft models
    Duo, Yanhong
    Zhu, Daoming
    Sun, Xiurong
    Suo, Meng
    Zheng, Zheng
    Jiang, Wei
    Tang, Ben Zhong
    BIOMATERIALS, 2021, 272
  • [9] Leveraging Patient-Derived Organoids for Personalized Liver Cancer Treatment
    Rao, Jianhua
    Song, Chao
    Hao, Yangyang
    Chen, Zaozao
    Feng, Sidu
    Xu, Shihui
    Wu, Xiaoyue
    Xuan, Zhengfeng
    Fan, Ye
    Li, Wenzhu
    Li, Junda
    Ren, Yong
    Li, Jian
    Cheng, Feng
    Gu, Zhongze
    INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2024, 20 (13): : 5363 - 5374
  • [10] Rapid and scalable personalized ASO screening in patient-derived organoids
    Means, John C.
    Martinez-Bengochea, Anabel L.
    Louiselle, Daniel A.
    Nemechek, Jacqelyn M.
    Perry, John M.
    Farrow, Emily G.
    Pastinen, Tomi
    Younger, Scott T.
    NATURE, 2025, 638 (8049) : 237 - 243