An efficient multi-scale feature enhancement network for industrial surface defect detection

被引:0
|
作者
Chen, Jiusheng [1 ]
Zha, Haoxiang [1 ]
Zhang, Xiaoyu [1 ]
Guo, Runxia [1 ]
Wu, Jun [2 ]
机构
[1] Civil Aviat Univ China, Coll Elect Informat & Automat, Tianjin, Peoples R China
[2] Civil Aviat Univ China, Coll Aeronaut Engn, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; object detection; surface defect detection; multi-scale feature enhancement;
D O I
10.1088/1361-6501/adb32a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface defect detection in industrial manufacturing ensures product quality and prevents malfunctions. To address issues such as multi-scale damage, low contrast, and small defects on the surfaces of industrial components, we propose an efficient multi-scale feature enhancement network for improving the detection performance of industrial surface defects. First, a multi-scale extraction module is proposed to extract defect features at multiple levels to ensure sufficient semantic information for multi-scale damage and enhance the feature extraction ability of defects with different scales. Dual-orientation attention is then introduced into the detection network to establish a connection between spatial and channel dimensional information, which enables the network to focus on defect regions and filter out background noise. This alleviates the problems of low contrast and small defects. The experimental results confirm that the proposed network demonstrates superior detection performance compared to other detection algorithms across five surface defect datasets. Additionally, the parameters are reduced by 7.9%, the floating-point operations decrease by 6.7%, and the model size is reduced by 5.2%. These improvements collectively provide an efficient solution for industrial surface defect detection.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] MSFF: A Multi-Scale Feature Fusion Network for Surface Defect Detection of Aluminum Profiles
    Sun, Lianshan
    Wei, Jingxue
    Du, Hanchao
    Zhang, Yongbin
    He, Lifeng
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2022, E105D (09) : 1652 - 1655
  • [2] Multi-scale feature reconstruction network for industrial anomaly detection
    Iqbal, Ehtesham
    Khan, Samee Ullah
    Javed, Sajid
    Moyo, Brain
    Zweiri, Yahya
    Abdulrahman, Yusra
    KNOWLEDGE-BASED SYSTEMS, 2024, 305
  • [3] Multi-scale feature balance enhancement network for pedestrian detection
    He, Yuzhe
    He, Ning
    Zhang, Ren
    Yan, Kang
    Yu, Haigang
    MULTIMEDIA SYSTEMS, 2022, 28 (03) : 1135 - 1145
  • [4] Multi-scale feature balance enhancement network for pedestrian detection
    Yuzhe He
    Ning He
    Ren Zhang
    Kang Yan
    Haigang Yu
    Multimedia Systems, 2022, 28 : 1135 - 1145
  • [5] Industrial surface defect detection and localization using multi-scale information focusing and enhancement GANomaly
    Peng, Jiangji
    Shao, Haidong
    Xiao, Yiming
    Cai, Baoping
    Liu, Bin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [6] An efficient model for metal surface defect detection based on attention mechanism and multi-scale feature
    Zhang, Heng
    Fu, Wei
    Wang, Xiaoming
    Li, Dong
    Zhu, Danchen
    Su, Xingwang
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01):
  • [7] A Multi-scale feature modulation network for efficient underwater image enhancement
    Zheng, Shijian
    Wang, Rujing
    Zheng, Shitao
    Wang, Fenmei
    Wang, Liusan
    Liu, Zhigui
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2024, 36 (01)
  • [8] Surface Defect Detection Based on Adaptive Multi-Scale Feature Fusion
    Wen, Guochen
    Cheng, Li
    Yuan, Haiwen
    Li, Xuan
    SENSORS, 2025, 25 (06)
  • [9] Multi-scale Fusion Attention Network for Industrial Surface Defect Classification
    Wu, Cong
    Lei, Sicheng
    Xu, Huawei
    Xing, Tongzhen
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 594 - 599
  • [10] Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion
    Wang, Haodong
    Xie, Jun
    Xu, Xinying
    Zheng, Zihao
    IEEE ACCESS, 2022, 10 : 129911 - 129924