Almost sure limit theorems with applications to non-regular continued fraction algorithms
被引:0
|
作者:
论文数: 引用数:
h-index:
机构:
Bonanno, Claudio
[1
]
Schindler, Tanja I.
论文数: 0引用数: 0
h-index: 0
机构:
Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Prof Stanislawa Lojasiewicza 6, PL-30348 Krakow, Poland
Univ Exeter, Dept Math & Stat, Harrison Bldg,North Pk Rd, Exeter EX4 4QF, England
Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, Vienna 1090, AustriaUniv Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
Schindler, Tanja I.
[2
,3
,4
]
机构:
[1] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Prof Stanislawa Lojasiewicza 6, PL-30348 Krakow, Poland
[3] Univ Exeter, Dept Math & Stat, Harrison Bldg,North Pk Rd, Exeter EX4 4QF, England
[4] Univ Vienna, Fac Math, Oskar Morgenstern Pl 1, Vienna 1090, Austria
Infinite ergodic theory;
Almost sure limits for Birkhoff sums;
Trimmed sums;
Non-regular continued fraction algorithms;
TRIMMED BIRKHOFF SUMS;
ITERATED LOGARITHM;
ERGODIC PROPERTIES;
LARGE NUMBERS;
STRONG LAWS;
OBSERVABLES;
D O I:
10.1016/j.spa.2025.104573
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We consider a conservative ergodic measure-preserving transformation T of the measure space (X, B, mu) with mu a sigma-finite measure and mu(X) = infinity. Given an observable g : X -> R, it is well known from results by Aaronson, see Aaronson (1997), that in general the asymptotic behaviour of the Birkhoff sums SNg(x) : Sigma(N)(j=1) (g circle Tj-1)(x) strongly depends on the point x is an element of X, and that there exists no sequence (d(N)) for which S(N)g(x)/d(N) -> 1 for mu-almost every x is an element of X. In this paper we consider the case g is not an element of L-1(X, mu) and continue the investigation initiated in Bonanno and Schindler (2022). We show that for transformations T with strong mixing assumptions for the induced map on a finite measure set, the almost sure asymptotic behaviour of S(N)g(x) for an unbounded observable g may be obtained using two methods, addition to S(N)g of a number of summands depending on x and trimming. The obtained sums are then asymptotic to a scalar multiple of N. The results are applied to a couple of non-regular continued fraction algorithms, the backward (or Renyi type) continued fraction and the even-integer continued fraction algorithms, to obtain the almost sure asymptotic behaviour of the sums of the digits of the algorithms.
机构:
Chebotarev Institute of Mathematics and Mechanics, Kazan State University, 420008 KazanChebotarev Institute of Mathematics and Mechanics, Kazan State University, 420008 Kazan
Chuprunov A.
Fazekas I.
论文数: 0引用数: 0
h-index: 0
机构:
Faculty of Informatics, University of Debrecen, H-4010 DebrecenChebotarev Institute of Mathematics and Mechanics, Kazan State University, 420008 Kazan
机构:
Nicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, PolandNicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
Szewczak, Zbigniew
Weber, Michel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Louis Pasteur, IRMA, UMR 7501, F-67084 Strasbourg, France
CNRS, F-67084 Strasbourg, FranceNicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
机构:
Nicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, PolandNicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland
Szewczak, Zbigniew
Weber, Michel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Louis Pasteur, IRMA, UMR 7501, F-67084 Strasbourg, France
CNRS, F-67084 Strasbourg, FranceNicolaus Copernicus Univ, Fac Math & Comp Sci, PL-87100 Torun, Poland