Online bipartite matching in the probe-commit model

被引:0
|
作者
Borodin, Allan [1 ]
Macrury, Calum [2 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[2] Columbia Univ, Grad Sch Business, New York, NY 10027 USA
关键词
Stochastic probing; Online algorithms; Bipartite matching; Optimization under uncertainty; IMPROVED BOUNDS; ALGORITHM;
D O I
10.1007/s10107-024-02184-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the classical online bipartite matching problem in the probe-commit model. In this problem, when an online vertex arrives, its edges must be probed to determine if they exist, based on known edge probabilities. A probing algorithm must respect commitment, meaning that if a probed edge exists, it must be used in the matching. Additionally, each online vertex has a patience constraint which limits the number of probes that can be made to its adjacent edges. We introduce a new configuration linear program and use it to establish the following competitive ratios which depend on the model used to generate the instance graph, and the arrival order of its online vertices:In the worst-case instance model, an optimal 1/ ratio when the vertices arrive in uniformly at random (u.a.r.) order.In the known independently distributed (i.d.) instance model, an optimal 1/2 ratio when the vertices arrive in adversarial order, and a 1-1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/e$$\end{document} ratio when the vertices arrive in u.a.r. order. The latter two results improve upon the previous best competitive ratio of 0.46 due to Brubach et al. (Algorithmica 2020). Our 1-1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/e$$\end{document}-competitive algorithm matches the best known result for the prophet secretary matching problem due to Ehsani et al. (SODA 2018). Our algorithm is efficient and implies a 1-1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/e$$\end{document} approximation ratio for the special case when the graph is known. This is the offline stochastic matching problem, and we improve upon the 0.42 approximation ratio for one-sided patience due to Pollner et al. (EC 2022), while also generalizing the 1-1/e\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1-1/e$$\end{document} approximation ratio for unbounded patience due to Gamlath et al. (SODA 2019).
引用
收藏
页数:54
相关论文
共 50 条
  • [1] Online Bipartite Matching in the Probe-Commit Model
    Department of Computer Science, University of Toronto, Toronto
    ON, Canada
    arXiv, 1600,
  • [2] Prophet Matching in the Probe-Commit Model
    Borodin, Allan
    MacRury, Calum
    Rakheja, Akash
    Leibniz International Proceedings in Informatics, LIPIcs, 2022, 245
  • [3] Biobjective Online Bipartite Matching
    Aggarwal, Gagan
    Cai, Yang
    Mehta, Aranyak
    Pierrakos, George
    WEB AND INTERNET ECONOMICS, 2014, 8877 : 218 - 231
  • [4] Biobjective online bipartite matching
    Aggarwal, Gagan
    Mehta, Aranyak
    Cai, Yang
    Pierrakos, George
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8877 : 218 - 231
  • [5] Online Bipartite Matching with Reusable Resources
    Delong, Steven
    Farhadi, Alireza
    Niazadeh, Rad
    Sivan, Balasubramanian
    Udwani, Rajan
    MATHEMATICS OF OPERATIONS RESEARCH, 2024, 49 (03) : 1825 - 1854
  • [6] A Polyhedral Approach to Online Bipartite Matching
    Torrico, Alfredo
    Ahmed, Shabbir
    Toriello, Alejandro
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 287 - 299
  • [7] A polyhedral approach to online bipartite matching
    Torrico, Alfredo
    Ahmed, Shabbir
    Toriello, Alejandro
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 443 - 465
  • [8] Online Matching in Regular Bipartite Graphs
    Barriere, Lali
    Munoz, Xavier
    Fuchs, Janosch
    Unger, Walter
    PARALLEL PROCESSING LETTERS, 2018, 28 (02)
  • [9] Online Bipartite Perfect Matching With Augmentations
    Chaudhuri, Kamalika
    Daskalakis, Constantinos
    Kleinberg, Robert D.
    Lin, Henry
    IEEE INFOCOM 2009 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-5, 2009, : 1044 - +
  • [10] Online total bipartite matching problem
    Shanks, Meghan
    Jacobson, Sheldon H.
    OPTIMIZATION LETTERS, 2022, 16 (05) : 1411 - 1426