Spatio-temporal transfer learning for multiphase flow prediction in the fluidized bed reactor

被引:0
|
作者
Xie, Xinyu [1 ]
Hao, Yichen [1 ]
Zhao, Pu [1 ]
Wang, Xiaofang [1 ]
An, Yi [1 ,2 ]
Zhao, Bo [2 ]
Jiang, Xiaomo [1 ]
Xie, Rong [1 ]
Liu, Haitao [1 ]
机构
[1] Dalian Univ Technol, Sch Energy & Power Engn, Dalian 116024, Peoples R China
[2] Dalian Boiler & Pressure Vessel Inspect & Testing, 20 Shacheng St, Dalian 116033, Peoples R China
基金
中国国家自然科学基金;
关键词
Coal-supercritical water fluidized bed; Spatio-temporal forecasting; Multi-phase flow dynamics; Transfer learning; Deep learning; Convolutional neural network; SUPERCRITICAL WATER; HYDROGEN-PRODUCTION; COAL-GASIFICATION; BIOMASS GASIFICATION;
D O I
10.1016/j.applthermaleng.2025.126247
中图分类号
O414.1 [热力学];
学科分类号
摘要
Data-driven deep learning has been utilized to provide fast yet accurate predictions for the multi-phase flow systems, thus significantly accelerating the downstream tasks like design and optimization. However, the performance of data-driven deep learning heavily relies on the amount of available data. In order to tackle the scenario with limited data, this paper develops a spatio-temporal transfer learning framework, named TransReactorNet, for predicting unsteady multi-phase flow fields in the coal-supercritical water fluidized bed reactor. Besides, this framework presents a coordinate affine transformation technique to address the issue of handling 3D unstructured flow data. Furthermore, an efficient residual modeling strategy built upon pure 3D convolutional neural networks with the direct multi-step forecasting and the channel independent strategy is developed to capture spatio-temporal multi-phase flow characteristics. Comprehensive comparison study against the competitors indicates that the TransReactorNet model can provide accurate and fast prediction of the unsteady multi-phase flow fields with scarce data. By leveraging knowledge transfer from the spatio-temporal data of reactors with similar operational conditions, the proposed method achieved remarkable performance metrics, attaining a peak-signal-to-noise ratio exceeding 35 dB and a structural similarity index above 0.96, while requiring only 10% of the target training data. Besides, it showcases good generalizability and low time complexity, indicated by the approximately 20x GPU memory consumption reduction compared to counterparts, and the nearly 1500x speedup compared to the numerical solver.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Spatio-temporal fusion and contrastive learning for urban flow prediction
    Zhang, Xu
    Gong, Yongshun
    Zhang, Chengqi
    Wu, Xiaoming
    Guo, Ying
    Lu, Wenpeng
    Zhao, Long
    Dong, Xiangjun
    KNOWLEDGE-BASED SYSTEMS, 2023, 282
  • [2] Cross-City Transfer Learning for Deep Spatio-Temporal Prediction
    Wang, Leye
    Geng, Xu
    Ma, Xiaojuan
    Liu, Feng
    Yang, Qiang
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 1893 - 1899
  • [3] Flow Prediction in Spatio-Temporal Networks Based on Multitask Deep Learning
    Zhang, Junbo
    Zheng, Yu
    Sun, Junkai
    Qi, Dekang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (03) : 468 - 478
  • [4] Spatio-Temporal Self-Supervised Learning for Traffic Flow Prediction
    Ji, Jiahao
    Wang, Jingyuan
    Huang, Chao
    Wu, Junjie
    Xu, Boren
    Wu, Zhenhe
    Zhang, Junbo
    Zheng, Yu
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4356 - 4364
  • [5] Spatio-Temporal AutoEncoder for Traffic Flow Prediction
    Liu, Mingzhe
    Zhu, Tongyu
    Ye, Junchen
    Meng, Qingxin
    Sun, Leilei
    Du, Bowen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5516 - 5526
  • [6] Flow field prediction in bed configurations: A parametric spatio-temporal convolutional autoencoder approach
    Mjalled, Ali
    Namdar, Reza
    Reineking, Lucas
    Norouzi, Mohammad
    Varnik, Fathollah
    Moennigmann, Martin
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2024,
  • [7] Spatio-temporal Graph Learning for Epidemic Prediction
    Yu, Shuo
    Xia, Feng
    Li, Shihao
    Hou, Mingliang
    Sheng, Quan Z.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2023, 14 (02)
  • [8] Spatio-Temporal Dynamic Graph Relation Learning for Urban Metro Flow Prediction
    Xie, Peng
    Ma, Minbo
    Li, Tianrui
    Ji, Shenggong
    Du, Shengdong
    Yu, Zeng
    Zhang, Junbo
    arXiv, 2022,
  • [9] Spatio-Temporal Dynamic Graph Relation Learning for Urban Metro Flow Prediction
    Xie, Peng
    Ma, Minbo
    Li, Tianrui
    Ji, Shenggong
    Du, Shengdong
    Yu, Zeng
    Zhang, Junbo
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) : 9973 - 9984
  • [10] Spatio-temporal prediction of temperature in fluidized bed biomass gasifier using dynamic recurrent neural network method
    Faridi, Ibtihaj Khurram
    Tsotsas, Evangelos
    Heineken, Wolfram
    Koegler, Marcus
    Kharaghani, Abdolreza
    APPLIED THERMAL ENGINEERING, 2023, 219