MINIMAX NONPARAMETRIC MULTI-SAMPLE TEST UNDER SMOOTHING

被引:0
|
作者
Xing, Xin [1 ]
Shang, Zuofeng [2 ]
Du, Pang [1 ]
Ma, Ping [3 ]
Zhong, Wenxuan [3 ]
Liu, Jun S. [4 ]
机构
[1] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA
[2] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[3] Univ Georgia, Dept Stat, Athens, GA 30602 USA
[4] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
关键词
Minimax optimality; multi-sample test; nonparametric test; penalized likelihood ratio test; smoothing splines; Wilks' phenomenon; DENSITY-FUNCTIONS; LARGE NUMBER; COMPUTATION; STATISTICS; EXPRESSION; MICROBIOTA;
D O I
10.5705/ss.202022.0141
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of comparing probability densities among multiple groups. To this end, we develop a new probabilistic tensor product smoothing spline framework to model the joint density of two variables. Under such a framework, the probability density comparison is equivalent to testing the presence/absence of interactions, for which we propose a penalized likelihood ratio test. Here we show that the test statistic is asymptotically chi-squared distributed under the null hypothesis. Furthermore, we derive a sharp minimax testing rate based on the Bernstein width for nonparametric multi-sample tests, and show that our proposed test statistic is minimax optimal. In addition, we develop a data-adaptive tuning criterion for choosing the penalty parameter. The results of simulations and real applications demonstrate that the proposed test outperforms conventional approaches under various scenarios.
引用
收藏
页码:2065 / 2087
页数:23
相关论文
共 50 条
  • [1] A Bayesian nonparametric multi-sample test in any dimension
    Al-Labadi, Luai
    Asl, Forough Fazeli
    Saberi, Zahra
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2022, 106 (02) : 217 - 242
  • [2] A Bayesian nonparametric multi-sample test in any dimension
    Luai Al-Labadi
    Forough Fazeli Asl
    Zahra Saberi
    AStA Advances in Statistical Analysis, 2022, 106 : 217 - 242
  • [3] A bi-aspect nonparametric test for the multi-sample location problem
    Marozzi, M
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2004, 46 (01) : 81 - 92
  • [4] The Multi-Sample Independence Test
    Marques, Filipe J.
    Coelho, Carlos A.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1129 - 1132
  • [5] Progressive censoring under inverse sampling for nonparametric multi-sample location problem
    Chattopadhyay, Gopaldeb
    Mukhopadhyay, Indranil
    TEST, 2010, 19 (02) : 325 - 341
  • [6] Progressive censoring under inverse sampling for nonparametric multi-sample location problem
    Gopaldeb Chattopadhyay
    Indranil Mukhopadhyay
    TEST, 2010, 19 : 325 - 341
  • [7] Nonparametric tests for the general multivariate multi-sample problem
    Zhang, Caiya
    Lin, Zhengyan
    Wu, Jianjun
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (07) : 877 - 888
  • [8] A nonparametric test for a multi-sample scale problem using ranked-set data
    Gaur, Anil
    Mahajan, Kalpana K.
    Arora, Sangeeta
    STATISTICAL METHODOLOGY, 2013, 10 (01) : 85 - 92
  • [9] Nonparametric tests for the multivariate multi-sample location problem
    Um, Y
    Randles, RH
    STATISTICA SINICA, 1998, 8 (03) : 801 - 812
  • [10] Multi-sample Renyi test statistics
    Hobza, Tomas
    Molina, Isabel
    Morales, Domingo
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2009, 23 (02) : 196 - 215