Hybrid-Structure-Oriented Transformer for Arm Musculoskeletal Ultrasound Segmentation

被引:0
|
作者
Chen, Lingyu [1 ]
Wang, Yue [1 ]
Zhao, Zhe [2 ]
Liao, Hongen [3 ,4 ,5 ]
Zhang, Daoqiang [1 ]
Han, Haojie [3 ]
Chen, Fang [4 ,5 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Artificial Intelligence, Key Lab Brain Machine Intelligence Technol, Minist Educ, Nanjing 211106, Peoples R China
[2] Tsinghua Univ, Beijing Tsinghua Changgung Hosp, Sch Clin Med, Orthoped & Sports Med Ctr, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200240, Peoples R China
[5] Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai 200240, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT I | 2024年 / 15001卷
关键词
Arm Musculoskeletal US Segmentation; Hybrid and Hierarchical Layer Structure; Horizontal and Curvilinear Morphology; LYMPHEDEMA;
D O I
10.1007/978-3-031-72378-0_58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmenting complex layer structures, including subcutaneous fat, skeletal muscle, and bone in arm musculoskeletal ultrasound (MSKUS), is vital for diagnosing and monitoring the progression of Breast-Cancer-Related Lymphedema (BCRL). Nevertheless, previous researches primarily focus on individual muscle or bone segmentation in MSKUS, overlooking the intricate and hybrid-layer morphology that characterizes these structures. To address this limitation, we propose a novel approach called the hybrid structure-oriented Transformer (HSformer), which effectively captures hierarchical structures with diverse morphology in MSKUS. Specifically, HSformer combines a hierarchical-consistency relative position encoding and a structure-biased constraint for hierarchical structure attention. Our experiments on arm MSKUS datasets demonstrate that HSformer achieves state-of-the-art performance in segmenting subcutaneous fat, skeletal muscle and bone. The code of our implementation is: https://github.com/Swecamellia/HSformer.
引用
收藏
页码:621 / 631
页数:11
相关论文
共 50 条
  • [1] Hybrid transformer UNet for thyroid segmentation from ultrasound scans
    Chi, Jianning
    Li, Zelan
    Sun, Zhiyi
    Yu, Xiaosheng
    Wang, Huan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 153
  • [2] ATTransUNet: An enhanced hybrid transformer architecture for ultrasound and histopathology image segmentation
    Li, Xuewei
    Pang, Shuo
    Zhang, Ruixuan
    Zhu, Jialin
    Fu, Xuzhou
    Tian, Yuan
    Gao, Jie
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 152
  • [3] A hybrid enhanced attention transformer network for medical ultrasound image segmentation
    Jiang, Tao
    Xing, Wenyu
    Yu, Ming
    Ta, Dean
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [4] HCTNet: A hybrid CNN-transformer network for breast ultrasound image segmentation
    He, Qiqi
    Yang, Qiuju
    Xie, Minghao
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 155
  • [5] TransFSM: Fetal Anatomy Segmentation and Biometric Measurement in Ultrasound Images Using a Hybrid Transformer
    Zhao, Lei
    Tan, Guanghua
    Pu, Bin
    Wu, Qianghui
    Ren, Hongliang
    Li, Kenli
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (01) : 285 - 296
  • [6] HAU-Net: Hybrid CNN-transformer for breast ultrasound image segmentation
    Zhang, Huaikun
    Lian, Jing
    Yi, Zetong
    Wu, Ruichao
    Lu, Xiangyu
    Ma, Pei
    Ma, Yide
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87
  • [7] A dual-branch and dual attention transformer and CNN hybrid network for ultrasound image segmentation
    Zhang, Chong
    Wang, Lingtong
    Wei, Guohui
    Kong, Zhiyong
    Qiu, Min
    FRONTIERS IN PHYSIOLOGY, 2024, 15
  • [8] Hybrid Transformer and Convolution for Medical Image Segmentation
    Wang, Fan
    Wang, Bo
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 156 - 159
  • [9] HTBE-Net: A hybrid transformer network based on boundary enhancement for breast ultrasound image segmentation
    Feng, Jiali
    Dong, Xiaoxuan
    Liu, Xiaojuan
    Zheng, Xufei
    DISPLAYS, 2024, 84
  • [10] Ultrasound Image Segmentation using a Model of Transformer and DFT
    Al-Qurri, Ahmed
    Almekkawy, Mohamed
    2024 IEEE UFFC LATIN AMERICA ULTRASONICS SYMPOSIUM, LAUS, 2024,