Mellin transform on compactly supported Boehmians

被引:0
|
作者
Gonzalez, B. J. [1 ,2 ]
Negrin, E. R. [1 ,2 ]
机构
[1] Univ La Laguna ULL, Fac Ciencias, Dept Anal Matemat, Campus Anchieta, ES-38271 San Cristobal la Laguna, Tenerife, Spain
[2] Inst Matemat & Aplicac IMAULL, Campus Anchieta, ES-38271 San Cristobal la Laguna, Tenerife, Spain
关键词
Boehmians; compactly supported distributions; generalized Mellin transform; Mellin-type convolution;
D O I
10.1080/10652469.2024.2417821
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the Mellin transform on a new Boehmian space by using the compactly supported distributions and where a Mellin-type convolution becomes the product for this space.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] MELLIN TRANSFORM FOR BOEHMIANS
    Roopkumar, R.
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2009, 4 (01): : 75 - 96
  • [2] On the mellin transform of tempered Boehmians
    Banerji, P.K.
    Loonker, D.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2000, 62 (04): : 39 - 48
  • [3] The Penrose transform for compactly supported cohomology
    Bailey, TN
    David, L
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 : 131 - 141
  • [4] On the Wavelet Transform for Boehmians
    Abhishek Singh
    Aparna Rawat
    Shubha Singh
    P. K. Banerji
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2022, 92 : 331 - 336
  • [5] Boehmians and Fourier transform
    Karunakaran, V
    Kalpakam, NV
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (03) : 197 - 216
  • [6] Poisson transform on Boehmians
    Roopkumar, R.
    Negrin, E. R.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (09) : 2740 - 2748
  • [7] Convolution transform for Boehmians
    Kalpakam, NV
    Ponnusamy, S
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2003, 33 (04) : 1353 - 1378
  • [8] Hilbert transform for Boehmians
    Karunakaran, V
    Kalpakam, NV
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (01) : 19 - 36
  • [9] On the Wavelet Transform for Boehmians
    Singh, Abhishek
    Rawat, Aparna
    Singh, Shubha
    Banerji, P. K.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2022, 92 (03) : 331 - 336
  • [10] Stieltjes transform for Boehmians
    Roopkumar, R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (11) : 845 - 853