STEFT: Spatio-Temporal Embedding Fusion Transformer for Traffic Prediction

被引:1
|
作者
Cui, Xiandai [1 ,2 ]
Lv, Hui [1 ,2 ]
机构
[1] Hubei Univ Technol, Sch Sci, Wuhan 430068, Peoples R China
[2] Hubei Univ Technol, Sch Chip Ind, Wuhan 430068, Peoples R China
关键词
traffic prediction; transformer; multi-head attention; VOLUME;
D O I
10.3390/electronics13193816
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate traffic prediction is crucial for optimizing taxi demand, managing traffic flow, and planning public transportation routes. Traditional models often fail to capture complex spatial-temporal dependencies. To tackle this, we introduce the Spatio-Temporal Embedding Fusion Transformer (STEFT). This deep learning model leverages attention mechanisms and feature fusion to effectively model dynamic dependencies in traffic data. STEFT includes an Embedding Fusion Network that integrates spatial, temporal, and flow embeddings, preserving original flow information. The Flow Block uses an enhanced Transformer encoder to capture periodic dependencies within neighboring regions, while the Prediction Block forecasts inflow and outflow dynamics using a fully connected network. Experiments on NYC (New York City) Taxi and NYC Bike datasets show STEFT's superior performance over baseline methods in RMSE and MAPE metrics, highlighting the effectiveness of the concatenation-based feature fusion approach. Ablation studies confirm the contribution of each component, underscoring STEFT's potential for real-world traffic prediction and other spatial-temporal challenges.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Spatio-temporal Fusion of Transformer and Global Feature Mining for Traffic Flow Prediction
    Meng, Xiangfu
    Bai, Yanbo
    Li, Minghao
    Cai, Ziang
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT VI, ICIC 2024, 2024, 14880 : 146 - 157
  • [2] Spatio-Temporal Parallel Transformer Based Model for Traffic Prediction
    Kumar, Rahul
    Mendes-moreira, Joao
    Chandra, Joydeep
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (09)
  • [3] Spatio-Temporal Transformer with Clustering and Dilated Attention for Traffic Prediction
    Xu, Baowen
    Wang, Xuelei
    Liu, Chengbao
    Li, Shuo
    Li, Jingwei
    2023 IEEE 26TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, ITSC, 2023, : 1065 - 1071
  • [4] Spatio-Temporal Adaptive Embedding Makes Vanilla Transformer SOTA for Traffic Forecasting
    Liu, Hangchen
    Dong, Zheng
    Jiang, Renhe
    Deng, Jiewen
    Deng, Jinliang
    Chen, Quanjun
    Song, Xuan
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4125 - 4129
  • [5] Adaptive Spatio-Temporal Relation Based Transformer for Traffic Flow Prediction
    Wang, Ruidong
    Xi, Liang
    Ye, Jinlin
    Zhang, Fengbin
    Yu, Xu
    Xu, Lingwei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 2220 - 2230
  • [6] Vehicle trajectory prediction based on spatio-temporal Transformer feature fusion
    Zhao, Wenhong
    Wang, Wei
    Wan, Zilu
    Tongxin Xuebao/Journal on Communications, 2024, 45 (11): : 267 - 276
  • [7] Transformer-Based Spatio-Temporal Traffic Prediction for Access and Metro Networks
    Wang, Fu
    Xin, Xiangjun
    Lei, Zhewei
    Zhang, Qi
    Yao, Haipeng
    Wang, Xiaolong
    Tian, Qinghua
    Tian, Feng
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (15) : 5204 - 5213
  • [8] STFEformer: Spatial-Temporal Fusion Embedding Transformer for Traffic Flow Prediction
    Yang, Hanqing
    Wei, Sen
    Wang, Yuanqing
    APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [9] A Large-Scale Spatio-Temporal Multimodal Fusion Framework for Traffic Prediction
    Zhou, Bodong
    Liu, Jiahui
    Cui, Songyi
    Zhao, Yaping
    BIG DATA MINING AND ANALYTICS, 2024, 7 (03): : 621 - 636
  • [10] STFGCN: Spatio-Temporal Fusion Graph Convolutional Networks for Subway Traffic Prediction
    Zhang, Xiaoxi
    Tian, Zhanwei
    Shi, Yan
    Guan, Qingwen
    Lu, Yan
    Pan, Yujie
    IEEE ACCESS, 2024, 12 : 194449 - 194461