Primeness of generalized wreath product II1 factors

被引:0
|
作者
Patchell, Gregory [1 ]
机构
[1] Univ Calif San Diego, Dept Math Sci, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Von Neumann algebras; II1; factors; Functional analysis; Operator algebras; Primeness; Generalized Bernoulli actions; Deformation/rigidity; VON-NEUMANN-ALGEBRAS; MALLEABLE ACTIONS; STRONG RIGIDITY; CLASSIFICATION; SUPERRIGIDITY; COMPUTATIONS; SUBALGEBRAS;
D O I
10.1007/s00209-024-03666-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we investigate the primeness of generalized wreath product II(1 )factors using deformation/rigidity theory techniques. We give general conditions relating tensor decompositions of generalized wreath products to stabilizers of the associated group action and use this to find new examples of prime II(1 )factors.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Rigidity results for wreath product II1 factors
    Ioana, Adrian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 252 (02) : 763 - 791
  • [2] ON FUNDAMENTAL GROUPS OF TENSOR PRODUCT II1 FACTORS
    Isono, Yusuke
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2020, 19 (04) : 1121 - 1139
  • [3] CARTAN SUBALGEBRAS OF AMALGAMATED FREE PRODUCT II1 FACTORS
    Ioana, Adrian
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2015, 48 (01): : 71 - 130
  • [4] Prime II1 factors arising from actions of product groups
    Drimbe, Daniel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (05)
  • [5] Factorial relative commutants and the generalized Jung property for II1 factors
    Atkinson, Scott
    Goldbring, Isaac
    Elayavalli, Srivatsav Kunnawalkam
    ADVANCES IN MATHEMATICS, 2022, 396
  • [6] Some rigidity results for II1 factors arising from wreath products of property (T) groups
    Chifan, Ionut
    Udrea, Bogdan Teodor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (07)
  • [7] A REMARK ON CENTRAL SEQUENCE ALGEBRAS OF THE TENSOR PRODUCT OF II1 FACTORS
    Wu, Wenming
    Yuan, Wei
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (08) : 2829 - 2835
  • [8] PAIRS OF II1 FACTORS
    SUNDER, VS
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1990, 100 (02): : 157 - 177
  • [9] GENERATORS OF II1 FACTORS
    Dykema, Ken
    Sinclair, Allan
    Smith, Roger
    White, Stuart
    OPERATORS AND MATRICES, 2008, 2 (04): : 555 - 582
  • [10] Non-embeddable II1 factors resembling the hyperfinite II1 factor
    Goldbring, Isaac
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2023, 17 (01) : 233 - 239