Melon Ripeness Determination Using K-nearest Neighbor Algorithm

被引:0
|
作者
Samar, Homer John M. [1 ]
Manalang, Hernanny Jeremy J. [1 ]
Villaverde, Jocelyn F. [1 ]
机构
[1] Map ua Univ, Sch Elect Elect & Comp Engn, Manila, Philippines
关键词
color segmentation; edge detection; region growing; region merging; KNN; HSV; Cantaloupe;
D O I
10.1109/ICCAE59995.2024.10569923
中图分类号
学科分类号
摘要
This paper presents a method for determining the ripeness of Cantaloupe using a K-Nearest Neighbors (KNN) Algorithm on a Raspberry PI. One of the most common problems is determining fruit ripeness purely by visual inspection and traditional methods, such as relying on touch, which is challenging to implement. The Color Segmentation Algorithm used in the study operates in the HSV color space. The Canny Edge detection technique utilizes a region-growing approach, region merging, and initial seed selection. Following the segmentation process, the ripeness of the Cantaloupe is determined using the K-Nearest Neighbors (KNN) Algorithm based on its features, where accuracy reports from the dataset determine the best value of K. The proposed Color Segmentation Algorithm successfully segments the captured Cantaloupe images without any errors and determines their ripeness in most cases based on the KNN Algorithm. However, there are instances where the KNN algorithm incorrectly predicts ripeness from uneven lighting and objects detected in the image, resulting in an accuracy of 80 percent. In general, the system's accuracy based on the Confusion Matrix testing dataset is 95 percent, and as for actual testing, it's 80 percent, as stated before.
引用
收藏
页码:461 / 466
页数:6
相关论文
共 50 条
  • [1] The k-Nearest Neighbor Algorithm Using MapReduce Paradigm
    Anchalia, Prajesh P.
    Roy, Kaushik
    PROCEEDINGS FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, MODELLING AND SIMULATION, 2014, : 513 - 518
  • [2] Quantum K-nearest neighbor algorithm
    Chen, Hanwu
    Gao, Yue
    Zhang, Jun
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2015, 45 (04): : 647 - 651
  • [3] A FUZZY K-NEAREST NEIGHBOR ALGORITHM
    KELLER, JM
    GRAY, MR
    GIVENS, JA
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1985, 15 (04): : 580 - 585
  • [4] Comparative Analysis of K-Nearest Neighbor and Modified K-Nearest Neighbor Algorithm for Data Classification
    Okfalisa
    Mustakim
    Gazalba, Ikbal
    Reza, Nurul Gayatri Indah
    2017 2ND INTERNATIONAL CONFERENCES ON INFORMATION TECHNOLOGY, INFORMATION SYSTEMS AND ELECTRICAL ENGINEERING (ICITISEE): OPPORTUNITIES AND CHALLENGES ON BIG DATA FUTURE INNOVATION, 2017, : 294 - 298
  • [5] Using a genetic algorithm for editing k-nearest neighbor classifiers
    Gil-Pita, R.
    Yao, X.
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2007, 2007, 4881 : 1141 - +
  • [7] FUZZY K-NEAREST NEIGHBOR ALGORITHM.
    Keller, James M.
    Gray, Michael R.
    Givens, James A.
    IEEE Transactions on Systems, Man and Cybernetics, 1985, SMC-15 (04): : 580 - 585
  • [8] A memetic algorithm based on k-nearest neighbor
    Xu, Jin
    Gu, Qiong
    Gai, Zhihua
    Gong, Wenyin
    Journal of Computational Information Systems, 2014, 10 (22): : 9565 - 9574
  • [9] Protein kinase inhibitors’ classification using K-Nearest neighbor algorithm
    Arian, Roya
    Hariri, Amirali
    Mehridehnavi, Alireza
    Fassihi, Afshin
    Ghasemi, Fahimeh
    Computational Biology and Chemistry, 2020, 86
  • [10] Fall Detection by Using K-Nearest Neighbor Algorithm on WSN Data
    Erdogan, Senol Zafer
    Bilgin, Turgay Tugay
    Cho, Juphil
    2010 IEEE GLOBECOM WORKSHOPS, 2010, : 2054 - 2058