Multiscale Attention Feature Fusion Based on Improved Transformer for Hyperspectral Image and LiDAR Data Classification

被引:0
|
作者
Wang, Aili [1 ]
Lei, Guilong [1 ]
Dai, Shiyu [1 ]
Wu, Haibin [1 ]
Iwahori, Yuji [2 ]
机构
[1] Harbin Univ Sci & Technol, Coll Measurement & Control Technol & Commun Engn, Heilongjiang Prov Key Lab Laser Spect Technol & Ap, Harbin 150080, Peoples R China
[2] Chubu Univ, Dept Comp Sci, Kasugai 4878501, Japan
关键词
Feature extraction; Transformers; Laser radar; Data mining; Convolutional neural networks; Convolution; Hyperspectral imaging; Correlation; Computer vision; Training; Hyperspectral image (HSI); interaction transformer; light detection and ranging (LiDAR); multisource data classification; three-dimensional convolutional neural network (3D-CNN);
D O I
10.1109/JSTARS.2024.3524443
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the uninterrupted evolution of remote sensing data, the list of available data sources has expanded, effectively utilizing useful information from multiple sources for better land surface observation, which has become an intriguing and challenging problem. However, the complexity of urban areas and their surrounding structures makes it extremely difficult to capture correlations between features. This article proposes a novel multiscale attention feature fusion network, composed of hierarchical convolutional neural networks and transformer to enhance joint classification accuracy of hyperspectral image (HSI) and light detection and ranging (LiDAR) data. First, a multiscale fusion Swin transformer module is employed to eliminate information loss in feature propagation, which explores deep spatial-spectral features of HSI while extracting height information from LiDAR data. This structure combines the advantages of the Swin transformer, featuring a nonlocal receptive field fusion by progressively expanding the window's receptive field layer by layer while preserving the spatial features of the image. It also exhibits excellent robustness against spatial misalignment. For the dual branches of hyperspectral and LiDAR, a dual-source feature interactor is designed, which facilitates interaction between hyperspectral and LiDAR features by establishing a dynamic attention mechanism, which effectively captures correlated information between the two modalities and fuses it into a unified feature representation. The efficacy of the proposed approach is validated using three standard datasets (Huston2013, Trento, and MUUFL) in the experiments. The classification results indicate that the proposed framework, by fully utilizing spatial context information and effectively integrating feature information, significantly outperforms state-of-the-art classification methods.
引用
收藏
页码:4124 / 4140
页数:17
相关论文
共 50 条
  • [1] CLASSIFICATION OF CLOUDY HYPERSPECTRAL IMAGE AND LIDAR DATA BASED ON FEATURE FUSION AND DECISION FUSION
    Luo, Renbo
    Liao, Wenzhi
    Zhang, Hongyan
    Pi, Youguo
    Philips, Wilfried
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2518 - 2521
  • [2] Multiscale Fusion Transformer Network for Hyperspectral Image Classification
    Yuquan Gan
    Hao Zhang
    Chen Yi
    Journal of Beijing Institute of Technology, 2024, (03) : 255 - 270
  • [3] Multiscale Fusion Transformer Network for Hyperspectral Image Classification
    Gan, Yuquan
    Zhang, Hao
    Yi, Chen
    Journal of Beijing Institute of Technology (English Edition), 2024, 33 (03): : 255 - 270
  • [4] MCFT: Multimodal Contrastive Fusion Transformer for Classification of Hyperspectral Image and LiDAR Data
    Feng, Yining
    Jin, Jiarui
    Yin, Yin
    Song, Chuanming
    Wang, Xianghai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [5] MSLAENet: Multiscale Learning and Attention Enhancement Network for Fusion Classification of Hyperspectral and LiDAR Data
    Fan, Yingying
    Qian, Yurong
    Qin, Yugang
    Wan, Yaling
    Gong, Weijun
    Chu, Zhuang
    Liu, Hui
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 10041 - 10054
  • [6] Gaussian Pyramid Based Multiscale Feature Fusion for Hyperspectral Image Classification
    Li, Shutao
    Hao, Qiaobo
    Kang, Xudong
    Benediktsson, Jon Atli
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (09) : 3312 - 3324
  • [7] Urban classification by multi-feature fusion of hyperspectral image and LiDAR data
    Cao Q.
    Ma A.
    Zhong Y.
    Zhao J.
    Zhao B.
    Zhang L.
    Yaogan Xuebao/Journal of Remote Sensing, 2019, 23 (05): : 892 - 903
  • [8] MEA-EFFormer: Multiscale Efficient Attention with Enhanced Feature Transformer for Hyperspectral Image Classification
    Sun, Qian
    Zhao, Guangrui
    Fang, Yu
    Fang, Chenrong
    Sun, Le
    Li, Xingying
    REMOTE SENSING, 2024, 16 (09)
  • [9] A Feature Embedding Network with Multiscale Attention for Hyperspectral Image Classification
    Liu, Yi
    Zhu, Jian
    Feng, Jiajie
    Mu, Caihong
    REMOTE SENSING, 2023, 15 (13)
  • [10] A dual attention driven multiscale-multilevel feature fusion approach for hyperspectral image classification
    Farooque, Ghulam
    Xiao, Liang
    Sargano, Allah Bux
    Abid, Fazeel
    Hadi, Fazal
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (04) : 1151 - 1178