Diffusion Augmentation and Pose Generation Based Pre-Training Method for Robust Visible-Infrared Person Re-Identification

被引:1
|
作者
Sun, Rui [1 ]
Huang, Guoxi [2 ]
Xie, Ruirui [2 ]
Wang, Xuebin [2 ]
Chen, Long [2 ]
机构
[1] Hefei Univ Technol, Sch Comp & Informat, Anhui Prov Key Lab Ind Safety & Emergency Technol, Key Lab Knowledge Engn Big Data,Minist Educ, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Sch Comp & Informat, Anhui Prov Key Lab Ind Safety & Emergency Technol, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Person re-identification; visible-infrared; self-supervised; corruption robustness; pre-; training;
D O I
10.1109/LSP.2024.3466792
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cross-Modal Visible-Infrared Person Re-identification (VI-REID) constitutes a vital application for constructing all-time surveillance systems. However, the current VI-REID model exhibits significant performance deterioration in noisy environments. Existing algorithms endeavor to mitigate this challenge through fine-tuning stages. We contend that, in contrast to fine-tuning stages, the pre-training phase can effectively exploit the attributes of extensive unlabeled data, thereby facilitating the development of a robust VI-REID model. Therefore, in this paper, we propose a pre-training method for VI-REID based on Diffusion Augmentation and Pose Generation (DAPG), aiming to enhance the robustness and recognition rate of VI-REID models in the presence of damaged scenes. Multiple transfer experiments on the SYSU-MM01 and RegDB datasets demonstrate that our method outperforms existing self-supervised methods, as evidenced by the results.
引用
收藏
页码:2670 / 2674
页数:5
相关论文
共 50 条
  • [1] Unified pre-training with pseudo infrared images for visible-infrared person re-identification
    ZhiGang Liu
    Yan Hu
    Multimedia Tools and Applications, 2024, 83 (38) : 86039 - 86058
  • [2] Attributes Based Visible-Infrared Person Re-identification
    Zheng, Aihua
    Feng, Mengya
    Pan, Peng
    Jiang, Bo
    Luo, Bin
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2022, 2022, 13534 : 254 - 266
  • [3] Occluded Visible-Infrared Person Re-Identification
    Feng, Yujian
    Ji, Yimu
    Wu, Fei
    Gao, Guangwei
    Gao, Yang
    Liu, Tianliang
    Liu, Shangdong
    Jing, Xiao-Yuan
    Luo, Jiebo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1401 - 1413
  • [4] Channel Augmentation for Visible-Infrared Re-Identification
    Ye, Mang
    Wu, Zesen
    Chen, Cuiqun
    Du, Bo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (04) : 2299 - 2315
  • [5] Robust Duality Learning for Unsupervised Visible-Infrared Person Re-Identification
    Li, Yongxiang
    Sun, Yuan
    Qin, Yang
    Peng, Dezhong
    Peng, Xi
    Hu, Peng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2025, 20 : 1937 - 1948
  • [6] Visible-Infrared Person Re-identification via Modality Augmentation and Center Constraints
    Chen, Qiang
    Xiao, Guoqiang
    Wu, Jiahao
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT III, 2023, 14256 : 221 - 232
  • [7] Unified Conditional Image Generation for Visible-Infrared Person Re-Identification
    Pan, Honghu
    Pei, Wenjie
    Li, Xin
    He, Zhenyu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 9026 - 9038
  • [8] Pose Attention-Guided Paired-Images Generation for Visible-Infrared Person Re-Identification
    Qian, Yongheng
    Tang, Su-Kit
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 346 - 350
  • [9] Interaction and Alignment for Visible-Infrared Person Re-Identification
    Gong, Jiahao
    Zhao, Sanyuan
    Lam, Kin-Man
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2253 - 2259
  • [10] On exploring pose estimation as an auxiliary learning task for Visible-Infrared Person Re-identification
    Miao, Yunqi
    Huang, Nianchang
    Ma, Xiao
    Zhang, Qiang
    Han, Jungong
    NEUROCOMPUTING, 2023, 556